ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "2b55e2d1-7bfd-497f-9713-447a6dc5a81b"}, "_deposit": {"id": "1253", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "1253"}, "status": "published"}, "_oai": {"id": "oai:repository.nii.ac.jp:00001253", "sets": ["136"]}, "author_link": [], "control_number": "1253", "item_5_biblio_info_30": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2009-03-26", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "28", "bibliographicPageStart": "1", "bibliographic_titles": [{"bibliographic_title": "NIIテクニカル・レポート", "bibliographic_titleLang": "ja"}, {"bibliographic_title": "NII Technical Report", "bibliographic_titleLang": "en"}]}]}, "item_5_description_28": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Consider applying Krylov subspace methods to systems of linear equations Ax=b or least squares problems min||b-Ax||, where A may be singular and/or nonsymmetric. Let R(A) and N(A) be the range and null space of A, respectively. \n\nBrown and Walker gave some conditions concerning R(A) and N(A) for the Generalized Minimal Residual (GMRES) method to converge to a least squares solution without breakdown for singular systems. \n\nIn this paper, we provide a geometrical view of Krylov subspace methods applied to singular systems by decomposing the algorithm into components of R(A) and its orthogonal complement. Taking coordinates along R(A) and its orthogonal complement will provide an interpretation of the conditions given in Brown and Walker, at the same time giving new proofs for the conditions. \n\nWe will apply the approach to the GMRES and GMRES(k) methods as well as the Generalized Conjugate Residual (GCR(k)) method, deriving conditions for convergence for inconsistent and consistent singular systems, for each method. \n\nFinally, we give examples arising in the finite difference discretization of two-point boundary value problems of an ordinary differential equation as an illustration of the convergence conditions.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_5_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.20736/0000001253", "subitem_identifier_reg_type": "JaLC"}]}, "item_5_publisher_31": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "国立情報学研究所", "subitem_publisher_language": "ja"}]}, "item_5_source_id_32": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1346-5597", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "速水, 謙", "creatorNameLang": "ja"}, {"creatorName": "Hayami, Ken", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "杉原, 正顯", "creatorNameLang": "ja"}, {"creatorName": "Sugihara, Masaaki", "creatorNameLang": "en"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-03-12"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "09-007E.pdf", "filesize": [{"value": "347.1 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 347100.0, "url": {"label": "NII Technical Report (NII-2009-007E):A Geometric View of Krylov Subspace Methods on Singular Systems", "url": "https://repository.nii.ac.jp/record/1253/files/09-007E.pdf"}, "version_id": "26b79d9d-a496-4740-9311-18d220cc962c"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "テクニカルレポート", "subitem_subject_language": "ja", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Technical Report", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "NII Technical Report (NII-2009-007E):A Geometric View of Krylov Subspace Methods on Singular Systems", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "NII Technical Report (NII-2009-007E):A Geometric View of Krylov Subspace Methods on Singular Systems", "subitem_title_language": "en"}]}, "item_type_id": "5", "owner": "1", "path": ["136"], "permalink_uri": "https://doi.org/10.20736/0000001253", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2019-03-12"}, "publish_date": "2019-03-12", "publish_status": "0", "recid": "1253", "relation": {}, "relation_version_is_last": true, "title": ["NII Technical Report (NII-2009-007E):A Geometric View of Krylov Subspace Methods on Singular Systems"], "weko_shared_id": -1}
  1. NIIテクニカル・レポート

NII Technical Report (NII-2009-007E):A Geometric View of Krylov Subspace Methods on Singular Systems

https://doi.org/10.20736/0000001253
https://doi.org/10.20736/0000001253
adc0ea68-cbcf-46bd-bfba-7b2ded12cf1b
名前 / ファイル ライセンス アクション
09-007E.pdf NII Technical Report (NII-2009-007E):A Geometric View of Krylov Subspace Methods on Singular Systems (347.1 kB)
Item type レポート / Report(1)
公開日 2019-03-12
タイトル
言語 en
タイトル NII Technical Report (NII-2009-007E):A Geometric View of Krylov Subspace Methods on Singular Systems
言語
言語 eng
キーワード
言語 ja
主題Scheme Other
主題 テクニカルレポート
キーワード
言語 en
主題Scheme Other
主題 Technical Report
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
ID登録
ID登録 10.20736/0000001253
ID登録タイプ JaLC
著者 速水, 謙

× 速水, 謙

ja 速水, 謙

en Hayami, Ken

Search repository
杉原, 正顯

× 杉原, 正顯

ja 杉原, 正顯

en Sugihara, Masaaki

Search repository
抄録
内容記述タイプ Abstract
内容記述 Consider applying Krylov subspace methods to systems of linear equations Ax=b or least squares problems min||b-Ax||, where A may be singular and/or nonsymmetric. Let R(A) and N(A) be the range and null space of A, respectively.

Brown and Walker gave some conditions concerning R(A) and N(A) for the Generalized Minimal Residual (GMRES) method to converge to a least squares solution without breakdown for singular systems.

In this paper, we provide a geometrical view of Krylov subspace methods applied to singular systems by decomposing the algorithm into components of R(A) and its orthogonal complement. Taking coordinates along R(A) and its orthogonal complement will provide an interpretation of the conditions given in Brown and Walker, at the same time giving new proofs for the conditions.

We will apply the approach to the GMRES and GMRES(k) methods as well as the Generalized Conjugate Residual (GCR(k)) method, deriving conditions for convergence for inconsistent and consistent singular systems, for each method.

Finally, we give examples arising in the finite difference discretization of two-point boundary value problems of an ordinary differential equation as an illustration of the convergence conditions.
言語 en
書誌情報 ja : NIIテクニカル・レポート
en : NII Technical Report

p. 1-28, 発行日 2009-03-26
出版者
言語 ja
出版者 国立情報学研究所
ISSN
収録物識別子タイプ ISSN
収録物識別子 1346-5597
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 06:04:48.378386
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3