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Abstract

Consider applying Krylov subspace methods to systems of linear equations Ax =
b or least squares problems min

x∈Rn
‖b − Ax‖2, where A ∈ Rn×n may be singular

and/or nonsymmetric and x, b ∈ Rn. Let R(A) and N (A) be the range and null
space of A, respectively.

Brown and Walker [3] gave some conditions concerning R(A) and N (A) for the
Generalized Minimal Residual (GMRES) method to converge to a least squares
solution without breakdown for singular systems.

In this paper, we provide a geometrical view of Krylov subspace methods applied
to singular systems by decomposing the algorithm into components of R(A) and
its orthogonal complement R(A)⊥. Taking coordinates along R(A) and R(A)⊥ will
provide an interpretation of the conditions given in [3], at the same time giving new
proofs for the conditions.

We will apply the approach to the GMRES and GMRES(k) methods as well
as the Generalized Conjugate Residual (GCR(k)) method, deriving conditions for
convergence for inconsistent and consistent singular systems, for each method.

Finally, we give examples arising in the finite difference discretization of two-
point boundary value problems of an ordinary differential equation as an illustration
of the convergence conditions.
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1 Introduction

Consider the system of linear equation

Ax = b, (1.1)

where A ∈ Rn×n, x, b ∈ Rn, which arises, for instance, in the discrete approximation of
partial differential equations.

When A is nonsymmetric, there are Krylov subspace type iterative solvers for (1.1)
based on biorthogonality, such as the Bi-CG method [12] and its modified versions such
as the CGS [34], Bi-CGSTAB [38], QMR [16] and TFQMR [14] methods. There are also
methods based on minimizing the residual r = b−Ax, such as the Generalized Minimum
Residual (GMRES) method [28] and the Generalized Conjugate Residual (GCR) method
[10]. When the coefficient matrix A is nonsingular, the behaviour of these methods is
fairly well understood [10, 28].

On the other hand, in the discrete approximation of partial differential equations,
the coefficient matrix of the resulting system of linear equations may be singular, de-
pending on the boundary condition. For instance, when Neumann boundary conditions
are imposed on the whole boundary, the system is rank one deficient. In the finite ele-
ment electromagnetic analysis using edge elements, singular systems with null spaces of
large dimensions may arise [2, 26, 20]. Such systems also arise when using redundant
interpolation functions in the finite element method [35]. The computation of stationary
probability vectors of stochastic matrices in the analysis of Markov chains also gives rise
to singular systems [37, 15, 5].

For such singular systems, the system (1.1) does not always have solutions, so it is
generally more appropriate to consider the least squares problem min

x∈Rn
‖b − Ax‖2.

The analysis of linear stationary iterative methods on singular systems can be found,
for instance, in [36, 6]. Work on semi-iterative methods for such systems was done in
[9, 17, 32].

As for the analysis of Krylov subspace methods for singular systems, there are the
works of [23, 37, 22, 13] for the conjugate gradient (CG) method, [15, 42] for methods
based on biorthogonality such as the QMR and TFQMR. For residual minimization type
methods, we refer to [1, 18, 19] for the conjugate residual (CR) method, [43] for the
Orthomin(k) method, [30, 31] for GCR and [3, 33, 21, 4, 31, 29] for GMRES.

When the system is singular, CG and methods based on biorthogonality may diverge
[43], and one has to modify the system in order to guarantee convergence[22, 41]. On the
other hand, for methods based on minimizing the residual, by principle, the residual is
expected to decrease monotonically without such modifications [1, 43].

Brown and Walker [3] gave some conditions concerning R(A) and N (A) for GMRES
to converge without breakdown to the least squares solutions for singular systems.

In this paper, we provide a geometrical view of Krylov subspace methods applied to
singular systems by decomposing the algorithm into the R(A) component and the R(A)⊥

component. This will clarify the meaning of the convergence conditions given in Brown
and Walker[3] and also give different proofs of the convergence theorems based on this
interpretation.
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We will apply the approach to the GMRES and GMRES(k) methods as well as the
Generalized Conjugate Residual (GCR(k)) method.

The rest of the paper is organized as follows: In Section 2, we analyse the convergence
of GMRES and GMRES(k) on singular systems, by introducing an orthonormal basis for
decomposing vector variables into the R(A) component and the R(A)⊥ component. In
Section 3, we analyse GCR(k) on singular systems using the same framework. Finally, in
Section 4, we give examples coming from the discretization of two-point boundary value
problems of an ordinary differential equation to illustrate the convergence conditions.

In this paper, exact arithmetic (i.e., no rounding errors) will be assumed.
The following notations will be used.
〈v1, v2, . . . , vi〉: the subspace spanned by the vectors v1, v2, . . . , vi.
V ⊥: orthogonal complement of subspace V of Rn.

For X ∈ Rn×n,
R(X): the range space of X, i.e., the subspace spanned by the column vectors of X,
N (X): the null space of X, i.e., the subspace of vectors v ∈ Rn such that Xv = 0,

M(X) :=
X + XT

2
: the symmetric part of X,

λmin(X): eigenvalue of X with minimum absolute value,
λmax(X): eigenvalue of X with maximum absolute value.

2 Convergence analysis of GMRES on singular sys-

tems

2.1 GMRES

Consider the least squares problem

min
x∈Rn

‖b − Ax‖2 (2.1)

where A ∈ Rn×n may be singular and b ∈ Rn.
We first consider applying the following GMRES [28] to this system.

GMRES

Choose x0.
r0 = b − Ax0

v1 = r0/||r0||2
For j = 1, 2, · · · until satisfied do

hi,j = (vi, Avj) (i = 1, 2, · · · , j)
v̂j+1 = Avj −

j∑
i=1

hi,jvi

hj+1,j = ||v̂j+1||2. If hj+1,j = 0, goto ∗.
vj+1 = v̂j+1/hj+1,j

End do
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∗ k := j
Form the approximate solution

xk = x0 + [v1, · · · , vk]yk

where y = yk minimizes ||rk||2 = ||βe1 − Hky||2.

Here, Hk = [hi,j] ∈ R(k+1)×k, β = ||r0||2 and e1 = [1, 0, · · · , 0]T. The method
minimizes the residual norm ‖rk‖2, over the search space xk = x0 + 〈v1, · · · , vk〉, where
〈v1, · · · , vk〉 = 〈r0, Ar0, · · · , Ak−1r0〉, and (vi, vj) = 0 (i �= j). The GMRES is said to
break down when hj+1,j = 0.

When A is nonsingular, the iterates of GMRES converges to the solution for all b, x0 ∈
Rn within at most n steps in exact arithmetic [28].

For the general case when A may be singular, Brown and Walker showed the following
[3].

Theorem 2.1 GMRES determines a least-squares solution of (1.1) without breakdown
for all b and x0 if and only if N (A) = N (AT).

Theorem 2.2 Suppose (1.1) is consistent (i.e., b ∈ R(A)). If R(A)∩N (A) = {0}, then
GMRES determines a solution without breakdown.

2.2 A geometrical framework

In this section we will begin by giving geometric interpretations to the conditions N (A) =
N (AT) and R(A) ∩ N (A) = {0}. This is done by decomposing the space Rn into R(A)
and R(A)⊥.

Let rankA = dimR(A) = r > 0, and

q1, . . . , qr : orthonormal basis of R(A), (2.2)

qr+1, . . . , qn : orthonormal basis of R(A)⊥, (2.3)

Q1 := [ q1, . . . , qr] ∈ Rn×r, (2.4)

Q2 := [ qr+1, . . . , qn] ∈ Rn×(n−r), (2.5)

so that,
Q := [ Q1, Q2] ∈ Rn×n (2.6)

is an orthogonal matrix satisfying

QTQ = QQT = In, (2.7)

where In is the identity matrix of order n.
Orthogonal transformation of the coefficient matrix A using Q gives

Ã := QTAQ =

[
Q1

TAQ1 Q1
TAQ2

0 0

]
=

[
A11 A12

0 0

]
, (2.8)

since Q2
TAQ = 0. Here, A11 := Q1

TAQ1 and A12 := Q1
TAQ2.

In the following, we clarify some properties concerning the sub-matrices A11 and A12

in (2.8).
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Theorem 2.3 A11 : nonsingular ⇐⇒ R(A) ∩ N (A) = {0}.
Proof.
R(A) ∩N (A) = {0}

�
R(Ã) ∩N (Ã) = {0}

�

R
([

A11 A12

0 0

])
∩ N

([
A11 A12

0 0

])
=

{(
x1

0

)∣∣∣∣∣ x1 ∈ N (A11)

}
= {0}

�
A11 : nonsingular. �

Lemma 2.4 A12 = 0 =⇒ A11 : nonsingular

Proof.

Since rankÃ = rank

[
A11 0
0 0

]
= rankA = r and A11 ∈ Rr×r, A11 is nonsingular. �

Theorem 2.5 A12 = 0 ⇐⇒ R(A) = R(AT) ⇐⇒ N (A) = N (AT).

Proof.
The first equivalence is shown as follows.
R(A) = R(AT)

�
R(Ã) = R(ÃT)

�
R

([
A11 A12

0 0

])
= R

([
A11

T 0
A12

T 0

])

�
A12 = 0, where Lemma 2.4 was used for the last equivalence.

The second equivalence of the theorem follows immediately from the well-known rela-
tion R(A)⊥ = N (AT). �

Examples of matrices A for which A12 = 0 hold are nonsingular, normal and symmetric
matrices, respectively.

Now we will consider decomposing iterative algorithms into the R(A) and R(A)⊥

components as in [1]. In order to do so, we will use the transformation

ṽ := QTv = [Q1, Q2]
Tv =

[
Q1

Tv
Q2

Tv

]
=

[
v1

v2

]
,

v = Qṽ = [Q1, Q2]

[
v1

v2

]
= Q1v

1 + Q2v
2,
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cf. (2.2)-(2.7), to decompose a vector variable v in the algorithm. Here, v1 corresponds
to the R(A) component Q1v

1 of v, and v2 corresponds to the R(A)⊥ component Q2v
2 of

v.
Note, for instance, that the residual vector r := b − Ax is transformed into

r̃ := QTr = QTb − QTAQ(QTx),

or [
r1

r2

]
=

[
b1

b2

]
−

[
A11 A12

0 0

] [
x1

x2

]
,

i.e.,
r1 = b1 − A11x

1 − A12x
2

r2 = b2.
(2.9)

Hence, in the least squares problem (2.1), we have

‖b − Ax‖2
2 = ‖r‖2

2 = ||r̃||22 = ‖r1‖2
2
+ ‖b2‖2

2
. (2.10)

2.3 Decomposition of GMRES

Based on the above geometric framework, we will analyze GMRES for the case when A
is singular, by decomposing it into the R(A) component and the R(A)⊥ component as
follows.

Decomposed GMRES (general case)

R(A) component R(A)⊥ component

b1 = Q1
Tb b2 = Q2

Tb

Choose x0

x1
0 = Q1

Tx0 x2
0 = Q2

Tx0

r1
0 = b1 − A11x

1
0 − A12x

2
0 r2

0 = b2

||r0||2 =
√
||r1

0||22
+ ||b2||22

v1
1 = r1

0/||r0||2 v2
1 = b2/||r0||2

For j = 1, 2, · · · until satisfied do

hi,j = (v1
i , A11v

1
j + A12v

2
j ) (i = 1, 2, · · · , j)

v̂1
j+1 = A11v

1
j + A12v

2
j −

j∑
i=1

hi,jv
1
i v̂2

j+1 = −
j∑

i=1

hi,jv
2
i

hj+1,j =
√
||v̂1

j+1||22
+ ||v̂2

j+1||22
. If hj+1,j = 0, goto ∗ .
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v1
j+1 = v̂1

j+1/hj+1,j v2
j+1 = v̂2

j+1/hj+1,j

End do

∗ k := j

Form the approximate solution

x1
k = x1

0 + [v1
1, · · · , v1

k] yk x2
k = x2

0 + [v2
1, · · · , v2

k] yk

where y = yk minimizes ||rk||2 = ||βe1 − Hky||2.
In Theorem 2.5 we gave a geometric interpretation: A12 = 0 to Brown and Walker’s

condition: N (A) = N (AT). Now it is important to notice that if A12 = 0 holds, the
decomposed GMRES further simplifies as follows.

Decomposed GMRES (Case N (A) = N (AT))

R(A) component R(A)⊥ component

b1 = Q1
Tb b2 = Q2

Tb

Choose x0

x1
0 = Q1

Tx0 x2
0 = Q2

Tx0

r1
0 = b1 − A11x

1
0 r2

0 = b2

||r0||2 =
√
||r1

0||22
+ ||b2||22

v1
1 = r1

0/||r0||2 v2
1 = b2/||r0||2

For j = 1, 2, · · · until satisfied do

hi,j = (v1
i , A11v

1
j) (i = 1, 2, · · · , j)

v̂1
j+1 = A11v

1
j −

j∑
i=1

hi,jv
1
i v̂2

j+1 = −
j∑

i=1

hi,jv
2
i

hj+1,j =
√
||v̂1

j+1||22
+ ||v̂2

j+1||22
. If hj+1,j = 0, goto ∗ .

v1
j+1 = v̂1

j+1/hj+1,j v2
j+1 = v̂2

j+1/hj+1,j

End do
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∗ k := j

Form the approximate solution

x1
k = x1

0 + [v1
1, · · · , v1

k] yk x2
k = x2

0 + [v2
1, · · · , v2

k] yk

where y = yk minimizes ||rk||2 = ||βe1 − Hky||2.
Note here that the R(A) component of GMRES is essentially equivalent to GMRES

applied to A11x
1 = b1, except for the scaling factors for v1

j . Note also that, from Lemma
2.4, A12 = 0 implies that A11 is nonsingular. Hence, arguments similar to [28] for GMRES
on nonsingular systems imply that GMRES gives a least-squares solution for all b and
x0.

2.4 Convergence theorem for arbitrary b

Thus, for the general case where b ∈ R(A) does not necessarily hold, we have the following.

Theorem 2.6
GMRES determines a least-squares solution of (2.1) for all b, x0 ∈ Rn if and only if
A12 = 0.

Proof. The sufficiency of the condition was shown above. The necessity follows since if
we assume that A12 �= 0, then there exists a b such that the algorithm breaks down at
step j = 1 without giving a least squares solution. The details are given below.

Assume A12 �= 0. Then there exist s1 �= 0 such that A11s
1 +A12s

2 = 0 where s1 ∈ Rr

and s2 ∈ Rn−r.
This can be shown as follows.
If A11 is singular, there exist s1 �= 0 such that A11s

1 = 0, so let s2 = 0.
If A11 is nonsingular, consider the following. Since A12 �= 0, there exists (A12)i,j �= 0,

so that A12ej �= 0, where ej ∈ Rn−r is the j-th unit vector. Let s2 = ej �= 0, so that
A12s

2 �= 0. Then let s1 = −A11
−1A12s

2 �= 0. Thus we have A11s
1 + A12s

2 = 0, where
s1 �= 0.

Thus, let b1 = s1 + A11x
1
0 + A12x

2
0 and b2 = s2 in the decomposed GMRES (general

case). Then, r1
0 = s1 �= 0, r2

0 = s2, and v1
1 = s1/‖s‖2, v

2
1 = s2/‖s‖2, where ‖s‖2 =√

‖s1‖2
2 + ‖s2‖2

2, and we have A11v
1
1 + A12v

2
1 = 0.

Hence, at step j = 1, h1,1 = (v1
1, A11v

1
1 + A12v

2
1) = 0, v̂1

2 = 0, v̂2
2 = 0, h2,1 =√

‖v̂1
2‖2

2
+ ‖v̂2

2‖2
2

= 0, so that the algorithm terminates.
However, for k = 1, x1

1 = x1
0 + y1v

1
1 = x1

0 + y1

‖s‖2
s1, x2

1 = x2
0 + y1v

2
1 = x1

0 + y1

‖s‖2
s2.

Thus, (2.9) gives r1
1 = b1 −A11x

1
1 −A12x

2
1 = b1 −A11x

1
0 −A12x

2
0 − y1

‖s‖2
(A11s

1 +A12s
2) =

r1
0 = s1 �= 0. Hence, Q1

Tr1 = r1
1 �= 0, so that ATr1 �= 0, which means that x1 is not a

least squares solution. �

Figure 2.4 summarizes the above arguments. Especially, it is interesting to note that
convergence without breakdown is equivalent to simple decomposition of the algorithm.
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Figure 1: The relation between convergence without breakdown and simple decomposition
of the algorithm.

Concerning where the approximate solution xi converges, we have the following.

Theorem 2.7 If N (A) = N (AT), the following hold for GMRES.
The R(A) component of xi: x1

i converges to A11
−1b1.

Moreover, if b ∈ R(A) (i.e., if b2 = 0), then the R(A)⊥ component of xi: x2
i ≡ x2

0,
so that xi converges to Q1A11

−1Q1
Tb + Q2Q2

Tx0.
Further, if x2

0 = 0 (i.e., x0 ∈ R(A)), then xi converges to
Q1A11

−1Q1
Tb, the pseudo-inverse solution.

Remark In the general case when b /∈ R(A), we cannot say anything about where the
R(A)⊥ component of xi converges to.

2.5 Convergence theorem for the case b ∈ R(A)

In the consistent case b ∈ R(A), we have b2 = Q2
Tb = 0. Hence, the decomposed

GMRES simplifies as follows.

Decomposed GMRES (Case b ∈ R(A))

R(A) component R(A)⊥ component

b1 = Q1
Tb b2 = 0

Choose x0

x1
0 = Q1

Tx0 x2
0 = Q2

Tx0

r1
0 = b1 − A11x

1
0 − A12x

2
0 r2

0 = 0

||r0||2 = ||r1
0||2
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v1
1 = r1

0/||r0||2 v2
1 = 0

For j = 1, 2, · · · until satisfied do

hi,j = (v1
i , A11v

1
j ) (i = 1, 2, · · · , j)

v̂1
j+1 = A11v

1
j −

j∑
i=1

hi,jv
1
i v̂2

j+1 = 0

hj+1,j = ||v̂1
j+1||2. If hj+1,j = 0, goto ∗ .

v1
j+1 = v̂1

j+1/hj+1,j v2
j+1 = 0

End do

∗ k := j

Form the approximate solution

x1
k = x1

0 + [v1
1, · · · , v1

k] yk x2
k = x2

0

where y = yk minimizes ||rk||2 = ||βe1 − Hky||2.
Note that in the above, the R(A) component of the GMRES is equivalent to GMRES

applied to A11x
1 = b1. Thus, we have the following.

Theorem 2.8
GMRES determines a solution for all b ∈ R(A),x0 ∈ Rn if and only if R(A) ∩ N (A) =
{0}.
Proof. The sufficiency is shown as follows. Assume R(A)∩N (A) = {0}. From Theorem
2.3, R(A) ∩ N (A) = {0} ⇔ A11: nonsingular. Hence, arguments in [28] for nonsingular
systems imply that GMRES gives a solution for arbitrary b ∈ R(A) and x0.

Next we show the necessity. Assume R(A) ∩N (A) �= {0}, i.e., A11 : singular. Hence,
there exists s1 �= 0 such that A11s

1 = 0. Thus, let b1 = s1 + A11x
1
0 +A12x

2
0. Then, in the

above decomposed GMRES for the case b ∈ R(A), r1
0 := s1, v1

1 = s1/||s1||2 �= 0.
In step j = 1, since A11s

1
1 = 0, h1,1 = (v1

1, A11v
1
1) = 0, v̂1

2 = A11v
1
1 − h1,1v

1
1 = 0 and

h2,1 = ||v̂1
2||2 = 0, so that the algorithm terminates.

However, for k = 1, x1
1 = x1

0 + y1v
1
1 = x1

0 + y1

‖s1‖2
s1, x2

1 = x2
0. Thus, (2.9) gives

r1
1 = b1−A11x

1
1−A12x

2
1 = b1−A11(x

1
0+

y1

‖s1‖2
s1)−A12x

2
0 = r1

0− y1

‖s1‖2
A11s

1 = r1
0 = s1 �= 0.

Hence, x1 is not a solution. �

Remark Theorem 2.2 (Theorem 2.6 in Brown and Walker [3]) claims only the sufficiency
of the condition.
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Concerning where the approximate solution xi converges, we have the following. Note
that r1

i = b1 − A11x
1
0 − A12x

2
0.

Theorem 2.9
If b ∈ R(A) and R(A) ∩ N (A) = {0}, the following hold for GMRES.

x1
i converges to A11

−1(b1−A12x
2
0) and x2

i = x2
0, so that xi converges to Q1A11

−1(b1−
A12x

2
0) + Q2x

2
0.

Moreover, if x2
i = 0, (i.e., x0 ∈ R(A)), x1

i converges to A11
−1b1 and x2

i = 0, so that
xi converges to the pseudo-inverse solution Q1A11

−1b1.

Remark From the proofs of the above theorems, it is clear that GMRES will converge to
the least squares solution within r = rankA iterations, when the condition for convergence
is fulfilled.

2.6 GMRES(k)

The restarted GMRES (GMRES(k)) method [28, 27] sets x0 = xk at every k iterations
in order to save memory and computational work. GMRES(k) also never breaks down
for nonsingular systems, but they may stagnate without converging to the solution. For
GMRES(k), we have the following. (See, e.g. Saad [27].)

Theorem 2.10 GMRES(k) converges to the solution for all b, x0 ∈ Rn if A is definite.

Here, definite means either positive definite or negative definite. For k = 1, the definite-
ness of A is also a necessary condition for convergence, so that GMRES(1) may stagnate
and not converge to the exact solution for some b and x0 if A is not definite.

For singular systems, note the following.

Lemma 2.11 M(A11) is definite ⇐⇒ M(A) is definite in R(A).

Proof. Note (y1, M(A11)y
1) = (y1, A11y

1) = y1T
Q1

TAQ1y
1

= (Q1y
1, AQ1y

1) = (Q1y
1, M(A)Q1y

1). Hence,

M(A11) is positive-definite
⇐⇒ (y1, M(A11)y

1) > 0 for all y1 �= 0
⇐⇒ (Q1y

1, M(A)Q1y
1) > 0 for all y1 �= 0

⇐⇒ (y, M(A)y) > 0 for all y ∈ R(A); y �= 0
⇐⇒ M(A) is positive-definite in R(A).

(Similarly for the negative-definite case.) �

Hence, we have the following.

Theorem 2.12 GMRES(k) converges to a least squares solution for all b, x0 ∈ Rn if
N (A) = N (AT) and M(A) is definite in R(A).

We also have the following.
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Lemma 2.13 If M(A) is definite, then A is nonsingular.

Thus, if M(A11) is definite, A11 is nonsingular, which is equivalent to R(A)∩N (A) =
{0}. Hence, we also have the following.

Theorem 2.14 GMRES(k) converges to a solution for all b ∈ R(A),x0 ∈ Rn if M(A)
is definite in R(A).

In the following, we derive a different interpretation of the definiteness of M(A11) in
terms of A.

Lemma 2.15 Let S ∈ Rn×n, ST = S, T ∈ Rn×n, rankT = r. Let q1, . . . , qr be a basis
of R(T ), and Q1 = [q1, . . . , qr] ∈ Rn×r. Let the inertia of S11 := Q1

TSQ1 ∈ Rr×r be
(π, ν, ζ). Then, the inertia of TTST is (π, ν, ζ + n − r).

Proof. There is a permutation matrix P ∈ Rn×n such that TP = [Q, 0]R, where R ∈
Rn×n is nonsingular. Hence, we have

TTST = PRT

[
Q1

T

0

]
S[Q10]RPT = PRT

[
S11 0
0 0

]
RPT.

Hence, from Sylvester’s law of inertia, the inertia of TTST is the same as that of

[
S11 0
0 0

]
.

�

From Lemma 2.15, we have the following.

Theorem 2.16 M(A11) is definite ⇐⇒ ATM(A)A is semidefinite and its rank is r =
rankA.

Proof.
M(A11) is positive definite.
⇐⇒ Q1

TM(A)Q1 is positive definite.
⇐⇒ The inertia of Q1

TM(A)Q1 is (r, 0, 0).
⇐⇒ The inertia of ATM(A)A is (r, 0, n − r).
⇐⇒ ATM(A)A is positive semidefinite and its rank is r.

Here, we have put S = M(A) and T = A in Lemma 2.15. Similarly for the negative
definite case. �

3 Convergence analysis of GCR(k) on singular sys-

tems

Next, we analyse GCR(k) using the same geometric framework.

3.1 GCR(k) on nonsingular systems

First, we briefly review the convergence of GCR(k) for nonsingular systems according to
[11, 10, 25, 1].
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For the system of linear equations

Ax = b, (3.1)

where A ∈ Rn×n is nonsingular but not necessarily symmetric,
b ∈ Rn is the right hand side, and x ∈ Rn is the solution, GCR(k) [10] is given as follows.

GCR(k)

Choose x0

∗ r0 := b − Ax0

p0 := r0

For i = 0, 1, . . . , k until the residual (r) converges, do
begin

αi :=
(ri, Api)

(Api, Api)
xi+1 := xi + αi pi

ri+1 := ri − αiApi

βi
j := −(Ari+1, Apj)

(Apj, Apj)
(0 ≤ j ≤ i)

pi+1 := ri+1 +
i∑

j=0

βi
j pj

end
x0 := xk+1

Go to ∗.
(3.2)

The method is a Krylov subspace method which minimizes the residual norm ||ri||2
over xi = x0+〈r0, Ar0, . . . , A

i−1r0〉, satisfying the orthogonality (Apl, Apm) = 0 (l < m),
within the same cycle. The method restarts every k+1 iterations, instead of doing the full
orthogonalization, in order to save storage and computation time. The full GCR without
restarts may be considered as GCR(∞).

When (Api, Api) = 0, GCR(k) is said to break down, and no further computation can
be performed.

If the (full) GCR does not break down, it determines the solution of (3.1) in at most
n iterations [10].

When A is nonsingular, the sufficient condition for the residual vector of GCR(k) to
converge to 0 is given by the following theorem [10, 25].

Theorem 3.1 If M(A) is definite, either of the following holds for GCR(k) (k ≥ 0).

1. There exists l ≥ 0, such that pi �= 0 (0 ≤ i < l) and rl = 0. Further,

‖ri+1‖2
2

‖ri‖2
2 ≤ 1 − {λmin(M(A))}2

λmax(ATA)
(3.3)

holds for 0 ≤ i < l.
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2. For all i ≥ 0, pi �= 0, ri �= 0 and (3.3) hold.

Next, note the following lemma.

Lemma 3.2 If M(A) is not definite, there exists v �= 0 such that (v, Av) = 0.

Theorem 3.1 and Lemma 3.2 give the following theorem which gives the necessary and
sufficient condition for GCR(k) to converge without breakdown [1].

Theorem 3.3 Let A ∈ Rn×n be nonsingular. Then, GCR(k) converges to the solution of
Ax = b without breakdown for all b, x0 ∈ Rn if and only if M(A) is definite.

GCR is a simple implementation of the Krylov subspace method for nonsymmetric
matrices. GCR requires more memory and computation compared to GMRES. However,
GCR may have some advantages in the context of variable preconditioning [39, 7, 8, 24].

Although GCR is “mathematically equivalent” to GMRES [28], GCR has breakdowns
unique to the method, which may occur when the system is indefinite, as shown in the
theorem above, where as GMRES never breaks down for nonsingular systems. This
character is reflected in the singular case, as will be shown in the following section.

3.2 GCR(k) on singular systems

In this section, we will consider the convergence of GCR(k) when it is applied to singular
systems.

The quantities in the GCR(k) algorithm (3.2) can be expressed as follows.
First,

(r, Ap) = (Qr̃, AQp̃) = r̃TQTAQp̃

=
[
r1T

, r2T
] [

A11 A12

0 0

] [
p1

p2

]
= (r1, A11p

1 + A12p
2).

Next,
(Ap, Ap) = (AQp̃, AQp̃) = p̃TQTATAQp̃

= p̃TQTATQQTAQp̃ = (Ãp̃, Ãp̃),

where,

Ãp̃ =

[
A11 A12

0 0

] [
p1

p2

]
=

[
A11p

1 + A12p
2

0

]
,

so that
(Ap, Ap) = (A11p

1 + A12p
2, A11p

1 + A12p
2).

Further,

(Ar, Ap) = (AQr̃, AQp̃) = r̃TQTATQQTAQp̃

= (Ãr̃, Ãp̃) = (A11r
1 + A12r

2, A11p
1 + A12p

2).

Hence, GCR(k) can always be decomposed into the R(A) and R(A)⊥ components as
follows.
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Decomposed GCR(k) (general case)

Choose initial approximate solution x0.

R(A) component R(A)⊥ component

b1 := Q1
Tb b2 := Q2

Tb

x1
0 := Q1

Tx0 x2
0 := Q2

Tx0

∗ r1
0 := b1 − A11x

1
0 − A12x

2
0 r2

0 := b2

p1
0 := r1

0 p2
0 := r2

0 = b2

For i = 0, 1, . . . , k until convergence do

begin

αi :=
(r1

i , A11p
1
i + A12p

2
i )

(A11p
1
i + A12p

2
i , A11p

1
i + A12p

2
i )

x1
i+1 := x1

i + αip
1
i x2

i+1 := x2
i + αip

2
i

r1
i+1 := r1

i − αi(A11p
1
i + A12p

2
i ) r2

i+1 := r2
i = b2

βj
i := −(A11r

1
i+1 + A12r

2
i+1, A11p

1
j + A12p

2
j)

(A11p
1
j + A12p

1
j , A11p

1
j + A12p

1
j)

(0 ≤ j ≤ i)

p1
i+1 := r1

i+1 +
i∑

j=0

βi
jp

1
j p2

i+1 := r2
i+1 +

i∑
j=0

βi
jp

2
j

end

x1
0 := x1

k+1 x2
0 := x2

k+1

Go to ∗ .

(3.4)

Note that r2
i , the R(A)⊥ component of the residual vector is always equal to the least

squares residual b2 of (2.1) (cf. (2.9), (2.10)).

3.2.1 Convergence theorem for arbitrary b

Using the decomposition obtained above, we will first derive the convergence theorem for
arbitrary b, i.e., when b may not necessarily be in R(A).
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First note that, for the case when N (A) = N (AT), we have A12 = 0 from Theorem
2.5. Hence, (2.9) becomes

r1 = b1 − A11x
1

r2 = b2.
(3.5)

Note also that, from Lemma 2.4, A11 is nonsingular. Hence, from (2.10) and (3.5), a least
squares solution of (2.1) is given by x1 = A11

−1b1.
Now, for the case N (A) = N (AT), the above decomposed GCR(k) (3.4) can be

simplified as follows.

Decomposed GCR(k) (Case N (A) = N (AT))

Choose initial approximate solution x0.

R(A) component R(A)⊥ component

b1 := Q1
Tb b2 := Q2

Tb

x1
0 := Q1

Tx0 x2
0 := Q2

Tx0

∗ r1
0 := b1 − A11x

1
0 r2

0 := b2

p1
0 := r1

0 p2
0 := r2

0 = b2

For i = 0, 1, . . . , k until convergence do

begin

αi :=
(r1

i , A11p
1
i )

(A11p
1
i , A11p

1
i )

x1
i+1 := x1

i + αip
1
i x2

i+1 := x2
i + αip

2
i

r1
i+1 := r1

i − αiA11p
1
i r2

i+1 := r2
i = b2

βj
i := −(A11r

1
i+1, A11p

1
j)

(A11p
1
j , A11p

1
j )

(0 ≤ j ≤ i)

p1
i+1 := r1

i+1 +
i∑

j=0

βi
jp

1
j p2

i+1 := r2
i+1 +

i∑
j=0

βi
jp

2
j

end

x1
0 := x1

k+1 x2
0 := x2

k+1

Go to ∗ .
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(3.6)

Note that the R(A) component of the above algorithm is equivalent to GCR(k) applied
to the system of linear equations

A11x
1 = b1. (3.7)

Hence, the convergence of the residual of the decomposed GCR(k) (3.6) is determined
by the convergence of the residual r1 for GCR(k) applied to the system (3.7). Hence, from
Theorem 3.1, we obtain the following lemma concerning the convergence of the residual
of the decomposed GCR(k) (3.6).

Lemma 3.4
If A12 = 0 and M(A11) is definite, either of the following holds for the decomposed GCR(k)
algorithm (3.6).

1. There exists l ≥ 0 such that p1
i �= 0 (0 ≤ i < l) and r1

l = 0. Further,

‖r1
i+1‖2

2

‖r1
i ‖2

2 ≤ 1 − {λmin(M(A11))}2

λmax(AT
11A11)

(3.8)

holds for 0 ≤ i < l.

2. For all i ≥ 0, p1
i �= 0, r1

i �= 0, and (3.8) hold.

From Lemmas 3.2 and 3.4, we derive the following theorem. The proof is similar to
that of Theorem 3.3 in [1] for CR.

Theorem 3.5
For the least squares problem min

x∈Rn
‖b − Ax‖2, A ∈ Rn×n, the necessary and sufficient

condition for GCR(k) to converge to a least squares solution without breakdown for all
b, x0 ∈ Rn is that A12 = 0 and M(A11) is definite.

Remark Here, by the term “GCR(k) to converge to a least squares solution”, we mean
r1 (the R(A) component of the residual r) to converge to 0, or equivalently, the residual
r to converge to Q2b

2, the R(A)⊥ component of b.

Proof.
The sufficiency of the condition follows from Lemma 3.4.
The necessity of the condition is shown by contraposition, i.e., it is shown that if

M(A11) is not definite or if A12 �= 0, then, there exists a b such that GCR(k) breaks down
before reaching a least squares solution.

(Case 1) The case when M(A11) is not definite.
If we suppose that M(A11) is not definite, then from Lemma 3.2, there exists v �= 0

such that (v, A11v) = 0. Thus, for such v, let

b = Q

[
b1

b2

]
,

[
b1

b2

]
=

[
v + Q1

TAx0

0

]
.
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Then,
r1

0 = Q1
Tr0 = Q1

T(b − Ax0) = b1 − Q1
TAx0 = v �= 0,

r2
0 = b2 = 0.

Hence, x0 is not a least squares solution, and

(r0, Ap0) = (r0, Ar0) = r0
TAr0 = (Qr̃0)

TAQr̃0

=
[
r1

0
T
, r2

0
T
] [

A11 A12

0 0

] [
r1

0

r2
0

]
= (r1

0, A11r
1
0) = (v, A11v) = 0.

If (Ap0, Ap0) = 0, GCR(k) of (3.2) breaks down at step i = 0 before reaching a least
squares solution.

On the other hand, if (Ap0, Ap0) �= 0, then, α0 =
(r0, Ap0)

(Ap0, Ap0)
= 0.

Hence, x1 = x0, r1 = r0 = p0, so that x1 is not a least squares solution. Further,

β0
0 = − (Ar1, Ap0)

(Ap0, Ap0)
= −(Ap0, Ap0)

(Ap0, Ap0)
= −1, and p1 = r1 + β0

0 p0 = p0 − p0 = 0.

Hence, for k ≥ 1, the denominator (Ap1, Ap1) of α1 becomes zero, and GCR(k) breaks
down at step i = 1 before reaching a least squares solution.

For k = 0, new x0 := old x1 = old x0, so that the process repeats without ever giving
a least squares solution.

(Case 2) The case when M(A11) is definite and A12 �= 0.
From A12 �= 0, there exist i and j such that (A12)i,j �= 0.

Hence, let v1 = (v1,1, . . . , v1,k, . . . , v1,r)
T where v1,k = δik, and

v2 = (v2,1, . . . , v2,k, . . . , v2,n−r)
T where v2,k = δjk.

Then, vT
1 A12v2 = (A12)i,j �= 0. Hence, there exist v1 �= 0 and v2 �= 0, such that

(v1, A12v2) �= 0.
Thus, for such v1 and v2, let

b = Q

[
b1

b2

]
,

[
b1

b2

]
=

[
v1 + Q1

TAx0

εv2

]
.

Then,
r1

0 = Q1
Tr0 = Q1

T(b − Ax0) = b1 − Q1
TAx0 = v1 �= 0,

r2
0 = Q2

Tr0 = Q2
T(b − Ax0) = b2 = εv2.

Hence, x0 is not a least squares solution.

If we let ε = −(v1, A11v1)

(v1, A12v2)
, then,

(r0, Ap0) = (r1
0, A11r

1
0) + (r1

0, A12r
2
0) = (v1, A11v1) + ε(v1, A12v2) = 0.

Now, if Ap0 = Ar0 = 0, GCR(k) of (3.2) breaks down at step i = 0 before reaching a
least squares solution.

On the other hand, if Ap0 �= 0, then, α0 =
(r0, Ap0)

(Ap0, Ap0)
= 0. Hence, r1 = r0 = p0,

so that x1 is not a least squares solution. Further, β0
0 = − (Ar1, Ap0)

(Ap0, Ap0)
= −1, p1 =

r1 + β0
0p0 = p0 − p0 = 0.
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Hence, for k ≥ 1, the denominator (Ap1, Ap1) of α1 becomes zero, and GCR(k) breaks
down at step i = 1 before reaching a least squares solution.

For k = 0, new x0 := old x1 = old x0, so that the process repeats without ever giving
a least squares solution.

Thus, we have shown the necessity of the condition. �

In order to rephrase the condition in Theorem 3.5 in terms of the original matrix A,
note the following.

Lemma 3.6 If N (A) = N (AT), then,
M(A11) is definite
⇐⇒ “ M(A) is semidefinite, and rankM(A) = rankA ” .

Proof. If N (A) = N (AT), Theorem 2.5 gives

QTM(A)Q =

[
M(A11) 0

0 0

]
.

Thus, we have
QT{M(A) − λI}Q = QTM(A)Q − λI,

so that
det QT det{M(A) − λ I} detQ

= det{QTM(A)Q − λ I} = det

[
M(A11) − λ Ir 0

0 −λ In−r

]
.

Since M(A)T = M(A), there exists a nonsingular matrix S such that S−1M(A)S =
diag[λ1, . . . , λn], where the right hand side is the diagonal matrix with diagonal elements
λ1, . . . , λn.

Hence, rank M(A) = the number of nonzero eigenvalues of M(A). Thus,
M(A11) : definite
⇐⇒ “M(A) : semidefinite, rank M(A) = rankM(A11) = r = rankA”. �

Thus, also noting Lemma 2.11, we have the following.

Theorem 3.7
For the least squares problem min

x∈Rn
‖b − Ax‖2, A ∈ Rn×n, the following are equivalent.

(C1) GCR(k) converges to a least squares solution
without breakdown for arbitrary b, x0 ∈ Rn.

(C2) A12 = 0 and M(A11) is definite.
(C3) N (A) = N (AT), M(A) is semi-definite and rankM(A) = rankA.
(C4) N (A) = N (AT) and M(A) is definite in R(A).

Remark 1 The above theorem is a natural extension of Theorem 3.3 for the nonsingular
case, since if A is nonsingular, N (A) = N (AT) = {0}.

Remark 2 If the condition of the above theorem is satisfied, the (full) GCR method
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(k = ∞) will give a least squares solution of (2.1) within r = rankA iterations. This
is because the R(A) component of the algorithm is equivalent to the method applied to
A11x

1 = b1 in Rr, where A11 is definite (cf. (3.6)).

Remark 3 As shown in subsection 2.4, and also in [3], N (A) = N (AT) is the necessary and
sufficient condition for GMRES to converge to a least squares solution without breakdown
for arbitrary b ∈ Rn and initial approximate solution x0 ∈ Rn. GCR and GCR(k) require
the extra condition: “M(A) is definite in R(A)” in order to avoid breakdowns unique to
the methods.

Remark 4 In order to judge whether the method has converged to a least squares solution
for inconsistent systems (i.e., when b /∈ R(A)), one could monitor the norm of ATr. This
observation is based on the following lemma.

Lemma 3.8 r1 := Q1
Tr = 0 ⇐⇒ ATr = 0.

Concerning where the approximate solution xi converges, we have the following.

Theorem 3.9 If N (A) = N (AT), the following hold for GCR(k).
If r1

i converges to 0 (least squares solution), x1
i converges to A11

−1b1.
Moreover, if b ∈ R(A),x2

i = x2
0, so that xi converges to Q1A11

−1b1 + Q2x
2
0.

Further, if x2
0 = 0 (i.e., x0 ∈ R(A)), xi converges to Q1A11

−1b1, which is the pseudo-
inverse solution (the least squares solution with minimum Euclidean norm).

Proof. If N (A) = N (AT), the R(A) component of the decomposed GCR(k) (3.6) can be
regarded as GCR(k) applied to A11x

1 = b1, where A11 is nonsingular from Lemma 2.4.
Hence, if the R(A) component of the residual converges to 0, x1

i converges to A11
−1b1.

Moreover, if b ∈ R(A), b2 = 0 in the R(A)⊥ component of the decomposed GCR(k)
(3.6), so that p2

i ≡ 0 (i ≥ 0), and hence, x2
i ≡ x2

0 (i ≥ 0). Hence, xi = Q1x
1
i + Q2x

2
i

converges to Q1A11
−1b1 + Q2x

2
0.

Further, if x2
0 = 0, x2

i ≡ x2
0 = 0 (i ≥ 0), so that xi converges to Q1A11

−1b1. Now,
since ‖x‖2

2 = xTx = ‖x1‖2
2 + ‖x2‖2

2, if we denote the converged solution by x∗, ‖x∗‖2
2 =

‖A11
−1b1‖2

2 + ‖x2
0‖2

2, and x2
0 = 0 gives the pseudo-inverse solution. �

Remark 1 Hence, if N (A) = N (AT), A is definite in R(A), and b ∈ R(A), we can obtain
the pseudo-inverse solution by setting x0 = 0.

Remark 2 Even if N (A) = N (AT) holds, if b is not in R(A) (inconsistent case), b2 �= 0
in the decomposed GCR(k) (3.6), so that it is not obvious where x2

i , and hence xi will
end up.

3.3 Convergence theorem for the case b ∈ R(A)

Next, we will consider the case when the system is consistent, that is when b ∈ R(A). In
this case, b2 = QT

2 b = 0 holds. Hence, the decomposed GCR(k) (3.4) can be simplified
as follows.
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Decomposed GCR(k) algorithm (Case b ∈ R(A))

R(A) component R(A)⊥ component

Choose initial approximate solutionx0.

b1 = Q1
Tb b2 = 0

x1
0 = Q1

Tx0 x2
0 = Q2

Tx0

∗ r1
0 = b1 − A11x

1
0 − A12x

2
0 r2

0 = b2 = 0

p1
0 = r1

0 p2
0 = r2

0 = 0

For i = 0, 1, . . . , k until convergence do

begin

αi =
(r1

i , A11p
1
i )

(A11p
1
i , A11p

1
i )

x1
i+1 = x1

i + αip
1
i x2

i+1 = x2
i = x2

0

r1
i+1 = r1

i − αiA11p
1
i r2

i+1 = r2
i = 0

βj
i = −(A11r

1
i+1, A11p

1
j)

(A11p
1
j , A11p

1
j )

(0 ≤ j ≤ i)

p1
i+1 = r1

i+1 +
i∑

j=0

βi
jp

1
j p2

i+1 = r2
i+1 = 0

end

x1
0 = x1

k+1 x2
0 = x2

k+1

Go to ∗ .

(3.9)

Note that x2
0 remains unchanged in the above algorithm.

Then, we have the following theorem.

Theorem 3.10
For the least squares problem min

x∈Rn
‖b − Ax‖2, A ∈ Rn×n, the following are equivalent.

(C1) GCR(k) converges to a solution without breakdown
for all b ∈ R(A),x0 ∈ Rn.
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(C2) M(A11) is definite.
(C3) M(A) is definite in R(A).

Proof.
(C2 =⇒ C1) : For b ∈ R(A), the R(A) component of the decomposed GCR(k) (3.9) is

equivalent to GCR(k) applied to the system A11x
1 = b1 − A12x

2
0. Hence, from Theorem

3.3, if M(A11) is definite, r1
i , the R(A) component of the residual, will converge to 0

without breakdown. Since r2
i , the R(A)⊥ component of the residual, is always 0, the

method converges to a solution without breakdown for arbitrary b ∈ R(A) and x0 ∈ Rn.
(C1 =⇒ C2) : We will prove by contraposition, i.e., we will show that if M(A11) is

not definite, there exists a b ∈ R(A) such that GCR(k) breaks down before reaching a
solution.

Assume that M(A11) is not definite. Then, from Lemma 3.2, there exists v1 �= 0 such
that (v1, A11v

1) = 0. Let b = Q1b
1 +Q2b

2 = Q1b
1 where b1 = v1 +A11x

1
0 +A12x

2
0. Then,

p1
0 = r1

0 = v1 �= 0.
Then, at step i = 0, if A11p

1
0 = A11v

1 = 0, breakdown occurs when computing α0.
But, r1

0 = v1 �= 0, so that r0 �= 0, i.e., x0 is not a solution.
On the other hand, if A11p

1
0 = A11v

1 �= 0, then
(r1

0, A11p
1
0) = (v1, A11v

1) = 0, so that α0 = 0, and x1
1 = x1

0,

r1
1 = r1

0 = v1, β0
0 = − (A11r

1
1, A11p

1
0)

(A11p1
0, A11p1

0)
= − (A11v, A11v)

(A11v1, A11v1)
= −1, and p1

1 = r1
1 + β0

0p
1
0 =

v1 − v1 = 0.
When k = 0, new x1

0 = old x1
1 = old x1

0, new x2
0 = old x2

1 = old x2
0, r1

0 = v1 �= 0.
Hence, the new x0 is not a solution, and this repeats for ever.

When k ≥ 1, p1
1 = 0, so that breakdown occurs at step i = 1, when computing α1,

even though r1
1 = v1 �= 0.

Hence, if M(A11) is not definite, for any x0, there exists
b = Q1b

1 ∈ R(A) such that GCR(k) does not converge to a solution.
(C2 ⇐⇒ C3) is a consequence of Lemma 2.11. �

Remark 1 The above theorem is also a natural extension of Theorem 3.1 for the nonsin-
gular case, since if A is nonsingular, b ∈ R(A) = Rn.

Remark 2 If the condition of the above theorem is satisfied and b ∈ R(A), GCR without
restarts will give a solution to (2.1) with in r = rankA iterations, since the R(A) compo-
nent of the algorithm is equivalent to the method applied to A11x

1 = b1 − A12x
2
0 in Rr,

where A11 is definite.

Remark 3 Note here that, if M(A11) is definite, then, A11 is nonsingular from Lemma
2.13, and R(A) ∩ N (A) = {0} holds from Theorem 2.3, which was the condition for
GMRES in Theorem 2.8.

Concerning where the approximate solution converges, we have the following. Note
that r1

i = b1 − A12x
2
0 − A11x

1
i .
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Theorem 3.11 If b ∈ R(A) and M(A) is definite in R(A), the following hold for
GCR(k).

x1
i converges to A11

−1(b1−A12x
2
0) and x2

i = x2
0, so that xi converges to Q1A11

−1(b1−
A12x

2
0) + Q2x

2
0.

Moreover, if x2
0 = 0, (i.e., x0 ∈ R(A)), x1

i converges to A11
−1b1 and x2

i = 0, so that
xi converges to the pseudo-inverse solution Q1A11

−1b1.

4 Examples

Finally, we analyse the convergence of GMRES, GMRES(k) and GCR(k) for the following
examples taken from [1].

Consider the two point boundary value problem of the ordinary differential equation

d2u

dx2
+ β

du

dx
= f(x) (0 < x < 1)

with boundary conditions
1. periodic boundary condition: u(0) = u(1)

or

2. Neumann boundary condition:
du

dx

∣∣∣∣∣
x=0

=
du

dx

∣∣∣∣∣
x=1

= 0.

As discretization of this problem, we discretize the interval [0, 1] into (n−1) sub-intervals
of the same width, and approximate the derivative by centered finite difference. Let the

width of the sub-intervals be h =
1

n − 1
, and xi := (i − 1)h (i = 1, . . . , n). Let ui be the

approximation of u(xi), and fi := f(xi). Further, let α± := 1± βh

2
. Hence, α+ + α− = 2.

4.1 Periodic boundary condition

If we approximate the boundary condition by u0 = un, un+1 = u1, the system of linear
equation
Au = f is given by

1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 α+ α−
α− −2 α+ 0. . .

. . .
. . .

0 α− −2 α+

α+ α− −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

un−1

un

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2
...

fn−1

fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.1)

Here, the coefficient matrix A is a nonsymmetric n×n matrix, except for the case β =
0. Since, rankA = n−1, A is singular. Hence, from the dimension theorem, dim(N (A)) =
1, and if we define
e = (1, 1, . . . , 1)T, Ae = 0, and N (A) = 〈e〉.

On the other hand, let A = (aij). Then, we have

(Au, e) =
n∑

i=1

n∑
j=1

aijuj =
n∑

j=1

(
n∑

i=1

aij

)
uj = 0 ∀u ∈ Rn,

23



so that e ⊥ R(A), or e ∈ R(A)⊥. Besides, since dim R(A)⊥ = dimN (A) = 1, we have
R(A)⊥ = N (A) = 〈e〉, i.e., R(A) ⊥ N (A)
(N (A) = N (AT) ). Hence, from Theorem 2.6, when one applies GMRES to the system of
linear equations (4.1) arising from the case of periodic boundary condition, the method will
converge to a least squares solution without breakdown for arbitrary initial approximate
solution x0.

Further, since

M(A) =
1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 1
1 −2 1 0. . .

. . .
. . .

0 1 −2 1
1 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

from Gerschgorin’s theorem, the eigenvalues of M(A) lie with in the closed interval [−4, 0].
Thus, M(A) is negative semi-definite. Note also that rankM(A) = rankA = n − 1.

Hence, from Lemma 2.12, Lemma 3.6 and Theorem 3.7, when one applies GMRES(k)
or GCR(k) to the system of linear equations (4.1), the methods will converge to a least
squares solution without breakdown for arbitrary x0.

Since f ∈ R(A) = (N (A))⊥ ⇐⇒ f ⊥ N (A) = 〈e〉 ⇐⇒ (f , e) =
n∑

i=1

fi = 0, if

n∑
i=1

fi = 0, we have f ∈ R(A). In this case, from Lemma 3.9 and 2.9, the approximate so-

lution of both methods will converge to the least squares solution Q1A11
−1QT

1 f +Q2Q
T
2 x0.

If further, x0 ∈ R(A), the approximate solution will converge to the pseudo-inverse
solution (the least squares solution with minimum Euclidean norm) Q1A

−1
11 QT

1 f .

4.2 Neumann boundary condition

In this case, if we approximate the boundary condition by −u1 + u2 = 0, un−1 − un = 0,
the system of linear equation Au = f obtained by discretization is

1

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0α− −2 α+

. . .
. . .

. . .

α− −2 α+

0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

un−1

un

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
f2
...

fn−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case, A is a nonsymmetric n×n matrix except when β = 0. Since rankA = n−1,
A is singular. Hence, dim(N (A)) = 1, and from Ae = 0, we have N (A) = 〈e〉.

On the other hand, if we let y =

(
1,

1

α−
,
α+

α2−
, . . . ,

αn−3
+

αn−2
−

,
αn−2

+

αn−2
−

)T

, from yTA = 0T,

we have yTAx = (y, Ax) = 0 for all x ∈ Rn. Hence, y ∈ R(A)⊥. By the way, from
dimR(A)⊥ = dimN (A) = 1, we have R(A)⊥ = 〈y〉.

Hence, unless β = 0, we have R(A)⊥ �= 〈e〉 = N (A), that is, R(A)⊥ �= N (A) (N (A) �=
N (AT)).
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However, R(A) ∩N (A) = {0} holds.
This is because N (A) = 〈e〉, R(A) = 〈y〉⊥, so that
N (A) ∩R(A) = {0} ⇐⇒ 〈e〉 ⊂ R(A) does not hold

⇐⇒ e ⊥ y does not hold ⇐⇒ (e, y) �= 0. This holds because, α± = 1± βh

2
> 0 gives

(e, y) = 1 +
1

α−
+

α+

α2−
+ · · ·+ αn−3

+

αn−2
−

+
αn−2

+

αn−2
−

> 1.

Here, if we choose f2, . . . , fn−1 such that f ⊥ y, which is equivalent to

(f , y) =
1

α−
f2 +

α+

α2−
f3 + · · ·+ αi−2

+

αi−1
−

fi + · · ·+ αn−3
+

αn−2
−

fn−1 = 0,

we have f ∈ R(A).
Hence, GMRES determines a solution for all f ∈ R(A),x0 ∈ Rn.
As for the definiteness of M(A11), which is a sufficient condition for GMRES(k),

and the necessary and sufficient condition for GCR(k) to converge to a solution without
breakdown for all f ∈ R(A), (condition (C2) of Theorem 3.10), we could show the
following, using Theorem 2.16.

For n = 2, 3, M(A11) is definite. However, for n = 4, M(A11) is not always definite,
depending on the value of β. The details are as follows.

Let a := βh
4

. Then, α+ = 1 + 2a and α− = 1 − 2a. Redefine A as Ah2. Let
S := ATM(A)A (cf. Theorem 2.16), si be the i-th leading principal minor of S, and
r = rankA.

For n = 2, AT = A = M(A), r = 1, s1 < 0, s2 = det S = 0, so that S is negative
semidefinite and rankS = 1 = r, so that M(A11) is negative definite.

For n = 3, r = 2, s1 = −12(a − 7
12

)2 − 11
12

< 0, s2 = 20a2 + 9 > 0, s3 = det S = 0, so
that S is negative semidefinite and rankS = 2 = r, so that M(A11) is negative definite.

For n = 4, r = 3, s1 = −12(a − 7
12

)2 − 11
12

< 0, s2 = 60a4 − 148a3 + 151a2 − 60a + 14 >
0, s4 = det S = 0, rankS = 3 = r, and s3 = 4(32a6 − 80a4 − 55a2 − 4). Hence, for
−a∗ ≤ a ≤ a∗ where a∗ ≈ 1.752, s3 ≤ 0, so that S is negative semidefinite and M(A11) is
negative definite, but for a < −a∗ or a > a∗, s3 > 0, so that S is not negative semidefinite
and M(A11) is not negative definite. Hence, when the convection term is too strong, the
condition does not hold.

5 Concluding remark

In this paper, we used the idea of decomposing the algorithm into the range space and
its orthogonal complement in order to analyse the behaviour of the GMRES, GMRES(k)
and GCR(k) methods on singular systems. The idea is a useful geometric framework for
analyzing the behaviour of iterative methods on singular systems.
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