ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "1994ddc4-77db-4520-89ed-b21ea1d2123e"}, "_deposit": {"id": "1274", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "1274"}, "status": "published"}, "_oai": {"id": "oai:repository.nii.ac.jp:00001274", "sets": ["136"]}, "author_link": [], "control_number": "1274", "item_5_biblio_info_30": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2013-12-03", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "24", "bibliographicPageStart": "1", "bibliographic_titles": [{"bibliographic_title": "NIIテクニカル・レポート", "bibliographic_titleLang": "ja"}, {"bibliographic_title": "NII Technical Report", "bibliographic_titleLang": "en"}]}]}, "item_5_description_28": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "We develop a general convergence theory for the generalized minimal residual method preconditioned by inner iterations for solving least squares problems. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory improves previous work [K. Morikuni and K. Hayami, SIAM J. Matrix Appl. Anal., 34 (2013), pp. 1\u0026#8211;22], particularly in the rank-deficient case. We also characterize the spectrum of the preconditioned coefficient matrix by the spectral radius of the iteration matrix for the inner iterations, and give a convergence bound for the proposed methods. Finally, numerical experiments show that the proposed methods are more robust and efficient compared to previous methods for some rank-deficient problems.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_5_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.20736/0000001274", "subitem_identifier_reg_type": "JaLC"}]}, "item_5_publisher_31": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "国立情報学研究所", "subitem_publisher_language": "ja"}]}, "item_5_source_id_32": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1346-5597", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "保國, 惠一", "creatorNameLang": "ja"}, {"creatorName": "Morikuni, Keiichi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "速水, 謙", "creatorNameLang": "ja"}, {"creatorName": "Hayami, Ken", "creatorNameLang": "en"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-03-13"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "13-004E.pdf", "filesize": [{"value": "452.8 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 452800.0, "url": {"label": "NII Technical Report (NII-2013-004E):Convergence of Inner-iteration GMRES Methods for Least Squares Problems (Revised Version)", "url": "https://repository.nii.ac.jp/record/1274/files/13-004E.pdf"}, "version_id": "b6cbb07e-5fa5-4bb8-9df0-3dd812f935fb"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "テクニカルレポート", "subitem_subject_language": "ja", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Technical Report", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "NII Technical Report (NII-2013-004E):Convergence of Inner-iteration GMRES Methods for Least Squares Problems (Revised Version)", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "NII Technical Report (NII-2013-004E):Convergence of Inner-iteration GMRES Methods for Least Squares Problems (Revised Version)", "subitem_title_language": "en"}]}, "item_type_id": "5", "owner": "1", "path": ["136"], "permalink_uri": "https://doi.org/10.20736/0000001274", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2019-03-13"}, "publish_date": "2019-03-13", "publish_status": "0", "recid": "1274", "relation": {}, "relation_version_is_last": true, "title": ["NII Technical Report (NII-2013-004E):Convergence of Inner-iteration GMRES Methods for Least Squares Problems (Revised Version)"], "weko_shared_id": -1}
  1. NIIテクニカル・レポート

NII Technical Report (NII-2013-004E):Convergence of Inner-iteration GMRES Methods for Least Squares Problems (Revised Version)

https://doi.org/10.20736/0000001274
https://doi.org/10.20736/0000001274
65cf1636-1a25-4145-b475-9d4b773b6d74
名前 / ファイル ライセンス アクション
13-004E.pdf NII Technical Report (NII-2013-004E):Convergence of Inner-iteration GMRES Methods for Least Squares Problems (Revised Version) (452.8 kB)
Item type レポート / Report(1)
公開日 2019-03-13
タイトル
言語 en
タイトル NII Technical Report (NII-2013-004E):Convergence of Inner-iteration GMRES Methods for Least Squares Problems (Revised Version)
言語
言語 eng
キーワード
言語 ja
主題Scheme Other
主題 テクニカルレポート
キーワード
言語 en
主題Scheme Other
主題 Technical Report
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
ID登録
ID登録 10.20736/0000001274
ID登録タイプ JaLC
著者 保國, 惠一

× 保國, 惠一

ja 保國, 惠一

en Morikuni, Keiichi

Search repository
速水, 謙

× 速水, 謙

ja 速水, 謙

en Hayami, Ken

Search repository
抄録
内容記述タイプ Abstract
内容記述 We develop a general convergence theory for the generalized minimal residual method preconditioned by inner iterations for solving least squares problems. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory improves previous work [K. Morikuni and K. Hayami, SIAM J. Matrix Appl. Anal., 34 (2013), pp. 1–22], particularly in the rank-deficient case. We also characterize the spectrum of the preconditioned coefficient matrix by the spectral radius of the iteration matrix for the inner iterations, and give a convergence bound for the proposed methods. Finally, numerical experiments show that the proposed methods are more robust and efficient compared to previous methods for some rank-deficient problems.
言語 en
書誌情報 ja : NIIテクニカル・レポート
en : NII Technical Report

p. 1-24, 発行日 2013-12-03
出版者
言語 ja
出版者 国立情報学研究所
ISSN
収録物識別子タイプ ISSN
収録物識別子 1346-5597
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 06:03:46.804560
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3