ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "283b091b-6fef-4a0d-acd6-955291df4f51"}, "_deposit": {"id": "1266", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "1266"}, "status": "published"}, "_oai": {"id": "oai:repository.nii.ac.jp:00001266", "sets": ["136"]}, "author_link": [], "control_number": "1266", "item_5_biblio_info_30": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2012-01-12", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "21", "bibliographicPageStart": "1", "bibliographic_titles": [{"bibliographic_title": "NIIテクニカル・レポート", "bibliographic_titleLang": "ja"}, {"bibliographic_title": "NII Technical Report", "bibliographic_titleLang": "en"}]}]}, "item_5_description_28": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear discrete ill-posed problems. The FGMRES method, proposed by Saad, is a generalization of GMRES that allows larger flexibility in the choice of solution subspace than GMRES. This paper explores application of FGMRES to the solution of linear discrete ill-posed problems. Numerical examples illustrate that FGMRES with a suitably chosen solution subspace may determine approximate solutions of higher quality than commonly applied iterative methods.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_5_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.20736/0000001266", "subitem_identifier_reg_type": "JaLC"}]}, "item_5_publisher_31": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "国立情報学研究所", "subitem_publisher_language": "ja"}]}, "item_5_source_id_32": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1346-5597", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "保國, 惠一", "creatorNameLang": "ja"}, {"creatorName": "Morikuni, Keiichi", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "Reichel, Lothar", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "速水, 謙", "creatorNameLang": "ja"}, {"creatorName": "Hayami, Ken", "creatorNameLang": "en"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2019-03-13"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "12-001E.pdf", "filesize": [{"value": "296.1 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 296100.0, "url": {"label": "NII Technical Report (NII-2012-001E):FGMRES for linear discrete ill-posed problems", "url": "https://repository.nii.ac.jp/record/1266/files/12-001E.pdf"}, "version_id": "4b3ad46c-f780-4cd3-bacd-0c881d5376f9"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "テクニカルレポート", "subitem_subject_language": "ja", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Technical Report", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "departmental bulletin paper", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "NII Technical Report (NII-2012-001E):FGMRES for linear discrete ill-posed problems", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "NII Technical Report (NII-2012-001E):FGMRES for linear discrete ill-posed problems", "subitem_title_language": "en"}]}, "item_type_id": "5", "owner": "1", "path": ["136"], "permalink_uri": "https://doi.org/10.20736/0000001266", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2019-03-13"}, "publish_date": "2019-03-13", "publish_status": "0", "recid": "1266", "relation": {}, "relation_version_is_last": true, "title": ["NII Technical Report (NII-2012-001E):FGMRES for linear discrete ill-posed problems"], "weko_shared_id": -1}
  1. NIIテクニカル・レポート

NII Technical Report (NII-2012-001E):FGMRES for linear discrete ill-posed problems

https://doi.org/10.20736/0000001266
https://doi.org/10.20736/0000001266
0975ee61-e61b-41f3-a70b-278b602e43f8
名前 / ファイル ライセンス アクション
12-001E.pdf NII Technical Report (NII-2012-001E):FGMRES for linear discrete ill-posed problems (296.1 kB)
Item type レポート / Report(1)
公開日 2019-03-13
タイトル
言語 en
タイトル NII Technical Report (NII-2012-001E):FGMRES for linear discrete ill-posed problems
言語
言語 eng
キーワード
言語 ja
主題Scheme Other
主題 テクニカルレポート
キーワード
言語 en
主題Scheme Other
主題 Technical Report
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
ID登録
ID登録 10.20736/0000001266
ID登録タイプ JaLC
著者 保國, 惠一

× 保國, 惠一

ja 保國, 惠一

en Morikuni, Keiichi

Search repository
Reichel, Lothar

× Reichel, Lothar

en Reichel, Lothar

Search repository
速水, 謙

× 速水, 謙

ja 速水, 謙

en Hayami, Ken

Search repository
抄録
内容記述タイプ Abstract
内容記述 GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear discrete ill-posed problems. The FGMRES method, proposed by Saad, is a generalization of GMRES that allows larger flexibility in the choice of solution subspace than GMRES. This paper explores application of FGMRES to the solution of linear discrete ill-posed problems. Numerical examples illustrate that FGMRES with a suitably chosen solution subspace may determine approximate solutions of higher quality than commonly applied iterative methods.
言語 en
書誌情報 ja : NIIテクニカル・レポート
en : NII Technical Report

p. 1-21, 発行日 2012-01-12
出版者
言語 ja
出版者 国立情報学研究所
ISSN
収録物識別子タイプ ISSN
収録物識別子 1346-5597
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 06:04:09.401664
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3