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GMRES on singular systems revisited

Ken Hayami*and Kota Sugiharal

Abstract

In [Hayami K, Sugihara M. Numer Linear Algebra Appl. 2011;
18:449-469], the authors analyzed the convergence behaviour of the
Generalized Minimal Residual (GMRES) method for the least squares
problem mingcgn ||b — Ax||s?, where A € R™ " may be singular and
b € R", by decomposing the algorithm into the range R(A) and its
orthogonal complement R(A)* components. However, we found that
the proof of the fact that GMRES gives a least squares solution if
R(A) = R(A") was not complete. In this paper, we will give a com-
plete proof.

Keywords: Krylov subspace method, GMRES method, singular system, least
squares problem.

1 Introduction

In Hayami, Sugihara[l], we showed in Theorem 2.6 that the Generalized
Minimal Residual (GMRES) method of Saad, Schultz[2] gives a least squares
solution to the least squares problem

. 2
min b Az, (1)
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where A € R™™ may be singular, for all b € R"™ and initial solution &, € R"
if and only if R(A) = R(AY), where R(A) is the range space of A. The
theorem had been proved by Brown and Walker[3], but we gave an alternative
proof by decomposing the algorithm into the R(A) component and R(A)*
component, thus giving a geometric interpretation to the range symmetry
condition: R(A) = R(AT). However, we later realized that the proof is not
so obvious as we stated. In this paper, we will give a complete proof.

We assume exact arithmetic, and the following notations will be used.

VL. orthogonal complement of subspace V of R".
For X € R™*",

R(X): the range space of X, i.e., the subspace spanned by the column
vectors of X,

N (X): the null space of X, i.e., the subspace of vectors v € R™ such that
Xv =0,

2 Convergence analysis of GMRES on singu-
lar systems

2.1 GMRES
The GMRES method of Saad, Schultz[2] applied to (1) is given as follows.

GMRES

Choose x.

To = b— Awo

v1 = 71o/|[rol|2

For 7 =1,2,--- until satisfied do
hi,j = (’UZ',A’U]') (Z: 1,2,...,j)

J
Vjt1 = A’Uj — E hi,jvi
i=1

hjvry = [10jqlla If hyy1; =0, goto *.
vy = Vji1/hjt

End do

xk =7

Form the approximate solution



T =T+ [V, ..., VY, B
where y = y, minimizes ||rg||2 = ||fe1 — Hryl|2-

Here, Hj, = [h; ;] € R¥*D>F is a Hessenberg matrix, i.e., h;; = 0 for i >
j+1.  B=|lroells and e; =[1,0,...,0]" € R¥". The method minimizes
the residual norm ||ry||2, over the search space &), = x¢ + span{vy,..., v},
where span{vy, ..., v;} = span{rg, Arg,..., A*"lry}, and (v;,v;) =0 (i #
j). Let V; = [vy,...,vj]. Then,

AV; = Vi H,; (2)

holds.
The GMRES is said to break down when h;;;; = 0. Then,

AV, = V;H; (3)

holds, where H; € R/*J consists of the firet j rows of H;.

When A is nonsingular, the iterates of GMRES converges to the solution
for all b, zy € R" within at most n steps in exact arithmetic [2].

For the general case when A may be singular, we define the following.

2.2 A geometrical framework

In this section we will begin by giving geometric interpretations to the condi-
tions AV'(A) = N(AT) and R(A)NN(A) = {0}. This is done by decomposing
the space R" into R(A) and R(A)™".

Let rankA = dimR(A) =r > 0, and

qi,---,q, : orthonormal basis of R(A), (4)
Qy11s- -, : orthonormal basis of R(A)", (5)
Qi:=qy,....q] eR™, (6)
Q? = [qurla LRI qn] € RnX(n—T)’ (7)
so that,

Q= [Q1, Q] € R™" (8)

is an orthogonal matrix satisfying
Q'Q=0Q" =1, (9)
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where I, is the identity matrix of order n.
Orthogonal transformation of the coefficient matrix A using ) gives

T T
i.. T | @ AQr Q@ AQ2 | | A Are
A:=Q"AQ = 0 0 =10 o |- (0

since QQTAQ =0. Here, All = QlTAQl and A12 = QlTAQQ.

In Hayami, Sugihara[l] we derived the following properties concerning

the sub-matrices A;; and Ao in (10).

Theorem 1 Ay : nonsingular <= R(A) NN (A) = {0}.
Lemma 1 A, =0 = Ay : nonsingular
Theorem 2 A, =0 < R(A) = R(AT) < N(A) = N(AT).

Now we will consider decomposing iterative algorithms into the R(A) and
R(A)* components. In order to do so, we will use the transformation
T 1
- v v
V= QTU = [Q17Q2]Tv - |: QlT :| - |: 2 :| )
) v
1

v =00 =[Q1,Q] [ 52 } = Q1v" + Qv

cf. (4)-(9), to decompose a vector variable v in the algorithm. Here, v'
corresponds to the R(A) component Qiv! of v, and v* corresponds to the
R(A)* component Qyv? of v.

For instance, the residual vector r := b — Ax is transformed into

7= Qr = QTb— QTAQ(Q ),

or
vt [0 ] [An A ][ =
r2 | | b 0 0 x? |’
ie.,
1 _ pl_ 1_ 2
e o

Hence, in the least squares problem (1), we have
- 2 2
16— Az,* = [|7]l2" = [[7|l2" = [l + 6] (12)

Note that it is not necessary to compute () or to decompose the algo-
rithm into the R(A) and R(A)* components in practice. It is only for the
theoretical analysis.



2.3 Decomposition of GMRES

Based on the above geometric framework, we will analyze GMRES for the
case when A is singular, by decomposing it into the R(A) component and
the R(A)* component as follows.

Decomposed GMRES (general case)

R(A) component R(A)" component
b' = QlTb b’ = QQTb
Choose x

T = Q1" xf = Q"
ry=b' — Apx} — Apal r? =b?

2 2
Irolle = y/11m3112% + 1161
vi =1r/|rol]2 v} =b"/||rol|2
For j =1,2,... until satisfied do

hij = (vi, Anvj + Apv?) (i=1,2,...,7)

J J
A1 1 2 sl 62— 2
Vi1 = Anvj + Apvj — § i jv; Vjy1 = — E i jv;
i=1 i=1

N 2 N 2
hyrg = 10kl + 19211 I Ay = 0, goto #.

1 _ gl o 2 _ 52 o

Vi1 = Uj+1/hg+1,3 Vit = ”j+1/hy+1,3
End do
k=]



Form the approximate solution

wllc:w(l)—i_[v%a"'?v}g]yk CU%:JJ%—F[’U%,...,’U%]yk
where y = y, minimizes ||r||2 = ||Ber — Hry|o.

From the above decomposed form of GMRES, we obtain
v ][] )
o o J[ve]T v

which is equivalent to (2), where [V!] = [o},... v}] (I1=1,2).
When hjiq,; =0, (14) becomes

An A | [VE_ TV ]y
0 0 ‘/]2 - ‘/;2 J

which is equivalent to (3).

(13)

(14)

In passing, when the system is consistent, i.e. b € R(A), then b* = Qb =
0. Hence, in the R(A)* component of the above decomposed algorithm,
r3 =b> =0, v? = 0. Thus, 'i)lz =0and v =0for [ =1,...,5+ 1. Hence,

V=0, V%, =0. Thus, (14) reduces to
AuV}l = le—l-lﬁj‘

(See section 2.5 of Hayami, Sugihara[l].)

Returning to the general case when the system may be inconsistent, in
Theorem 2 we gave a geometric interpretation: A;5 = 0 to the condition:
N(A) = N(AT). Now it is important to notice that if Aj; = 0 holds, the

decomposed GMRES further simplifies as follows.



Decomposed GMRES (Case N (A) = N (AT))

R(A) component R(A)" component
=Q:'b b’ =Q,'b
Choose x
= Q1" xo xf = Q2 X0
ri=0b"— Ajx} rZ =b

2 2
Irolla = y/11m3lla% + 11671
vy =75/l[roll2 v? =b"/|Irolla
For j =1,2,... until satisfied do

hij = (vi, Anvj) (i=1,2,...,5)

A

L2 2
'v 1—A11'v E h”v 'uj+1——2 hi jv;

hyrg = Nl + 192,17 I hyery =0, goto +.

”}H = f’}+1/hj+1,j ”?H = f’§+1/hj+1,j
End do
xki=j
Form the approximate solution
Ty =@y + [V, vy, Ty = oy + [vi, ., vi]
where y = y,, minimizes ||7||> = ||fe1 — Hryl|o-



Then, (14) simplifies to

AnVy = VI H, (15)
0 = V2H,.

If further, hjyq; = 0, we have

All‘/jl == ‘/]1["[] (16)
0 = V?H;

Note here that the R(A) component of GMRES is “essentially equivalent”
to GMRES applied to Aj;&! = b, except for the scaling factors for 'U}. Note
also that, from Lemma 1, A;5 = 0 implies that A;; is nonsingular. From these
observations, we concluded in Hayami, Sugihara[l] (Section 2.3, p. 454) that
if Ajp = 0, “arguments similar to Saad, Schultz[2] for GMRES on nonsingular
systems imply that GMRES gives a least-squares solution for all b and x,”.

However, we later found that the proof is not so obvious. The difficulty is
that, although the Krylov basis V; = [vy,...,v;] at step j of the GMRES is
orthonormal, the corresponding R(A) component vecors V' = [v1, ..., v}]
are not necessarily orthogonal, and it is not even obvious that they are lin-
early independent. In the following, we give a complete proof of the state-
ment. See also Sugihara, Hayami, Zheng[4], Theorem 1 for a related proof for
the right-preconditioned MINRES method for symmetric singular systems.

First, we observe the following.

Lemma 2 In the GMRES method, if ro # 0, hiy1, #0 (1 < i < j—1),
then v = c;b® (i =1,...,7), i.e. all the R(A)* components v2(i=1,...,5)
are parallel to b*.

Proof: From the above Decomposed GMRES(general case) (13),

j

9 32 . 2 a: AQ_ZHQ 2 A2 o
i=1

induction, we have v? = ¢;b* (i = 1,...,5). O

Next, we prove the followi,ng.

Theorem 3 In the GMRES method, assume ro # 0, hip1; # 0 (1 <i <
j—1) hold. If b € R(A) (b* = 0), then rankV] = j. If b ¢ R(A) (b*> # 0),
then mnijl =j3—1orj.



Proof: When b € R(A) (b* = 0), from Lemma 2,

~ vi,. .. v}
== e ]

. ey

=)

Hence, mnij1 = rankV; = j.

When b ¢ R(A) (b* # 0), for j = 1, rankV}! = rank[v}] = 0 or 1,
depending on whether v} = 0 or v] # 0.

Let 7 > 2. From Lemma 2, and ¢; = 1/||r¢|| # 0, we have

% T vi v; vl vy v}’ 1
o o SERTTR i , R _
Vi =@, ab®, ..., cjb2] [bQ, 0, ..., O }S ’
where
1/01 —02/61 —Cj/Cl
0 .
€ R
0
1
is nonsingular, and v}’ = v!/c; (i = 1,..., 7). Therefore,
v vV
rank{ll));’ ’(’)2 ”6‘ } = rankV; = j.
Then, rank [vy/, ..., v;/] = j — 1, since if rank [vy/, ..., v;/] < j — 1, then
Y Y
v, V3 ..., VU .
k 1 2 ’ j
ran [bQ, 0, ..., 0|~/
Hence, rank [v], ... v}] = rank [v%/, o ]} =j—1lorj. O

Note that Lemma 2 and Theorem 3 hold without assuming A5 = 0.
Next, we prove the following, which corresponds to the sufficiency of the
condition in Theorem 2.6 of Hayami, Sugihara[l].

Theorem 4 Assume Ao = 0. Then, GMRES determines a least squares
solution of (1) for all b,xy € R™.

Proof: If 1o = 0, a (least squares) solution to (1) is obtained. Assume r( # 0.
Assume b € R(A). Then, from Theorem 3, rankV; = j. Since rankVj <
r = rankA, there exists a j < r, such that h41,; #0 (1 <i<j—1), hjy1; =
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0. Then from (16), we have Alﬂ/}l = V}lHj. Since A;; is nonsingular,
rankA;;V{ = j. Then, j = rankV! H; < min(j, rankH;), where rankH; < j.
Hence, rankH; = j, and H; is nonsingular. Note that

ry = b —Anx}=b — Ay (x5 + V'y,) = 5 — AuVj'y,
— vl V) Hyy, = V] (e — Hyy,).

where e; = (1,0,...,0)" € R7. Hence, a least squares solution is obtained
at step j (j <r) for y; = BH; 'ey, for which r} = 0.

Next, assume b ¢ R(A). Then, in the proof of Theorem 3, rankA = r >
ramkl/;-1 = j or j — 1, which implies that there exists 7 < r 4+ 1 such that
hiv1, 70 (1<i<j—1), hjp1,;, =0.

(As in Point a and b in the proof of Theorem 1 in Sugihara et al.[4]), since
V?H; = 0 from (16), if H; is nonsingular, V> = [v],...,v5] = 0. However,
since b ¢ R(A), b* # 0, so that v? = b*/||ro||2 # 0. Hence, H; is singular,
and there exists w # 0 such that Hjw = 0. (In fact, rankH; = j — 1, since
hfz'—l—l,z’ 7£ 0 (1 S 1 S j - ].)) Then, from (16), ‘/lej'lU = AHlew = 0. Since
Ajq1 is nosingular, le’w =0, w # 0. Hence, 1ranij1 = j — 1. Then, a least
squares solution is obtained at step j if and only if H;y,; — fe; € /\/’(le)
Since ranijl—i-dim./\/'(le) = j, dim N (V}') = 1. Let N(V7) = {cv7}, where
ceR, v#0ecR/. Let

(17)

v=| " £0cR/, vy eR, vy, e R7Y and H,; = byt I
vy ’ ’ ’ / Hy hy |’

where h11T = [h'lla ceey hl,j—l}a

hoi -+ hoj haj

Hy = : and  hgy = :

0 hjj-1 hyj

where Hs; is nonsingular since
hiy1: 70 (1 <i<j—1). (18)

Note the following:

A least squares solution is obtained at step j
<= dy such that H;y — Be; = cv
hily, +hyy, = B+an
Hyy, +yjhyn = cvy
— (hlj — h11TH21_1h22) yj=0B+c (Vl - h11TH21_1V2) ;

<= dy,,y; such that {

10



where

y= [yl} and y; = : e R/°L

Here note that
I O|[Hy' 0][0 I hiu" by 1 [ 1T Ha 'ha
~h; "1 o 1|1 0 Hy hyy | | O hyj—hy " Hy thy
Since det Hj = 0, hlj - hllTHgl_lhgg = 0. ThUS,
A least squares solution is obtained at step j
<~ ﬁ =C (Vl — hllTH21_1l/2)

< v —hy Hy vy #0

since § # 0. Hence, if v; — hi T Hy "o, £ 0, a least squares solution is
obtained at step j. If v; — hii T Hy "oy = 0, a least squares solution is not
obtained at step j. Note that

1 0 H21_1 0 0 I hllT 141 - 1 H21_11/2
—hllT 1 OT 1 1 OT H21 Vo o OT v — hllTHzlill/Q
Hence, if vV — hllTH21_1V2 = O,

hllT 1241 :| .
rank =7 -1,
{ Hy  vo J

since rankHy; = j — 1. Hence,

where s # 0. Then,

1 [ Rt 1 Iy 1] Lz
0=Viv=V, Hy, s=V, H; or s:AHVj s

Since Aj; is nonsingular,

xgl[lé;l]s:[vi,...,vl. Is—0,

11



where s # 0. Hence, vi,. .. ,’vjl-_1 are linearly dependent and
ranijl_l = rank ['v%, e ,vjl._l} < j—2, but l"anij1 = rank [v%, e ,v}_l, vﬂ =
j — 1. Hence, we have rankV}' | = j — 2.

Next, we will use an induction argument on ¢, where 1 < ¢ < 5 —2. Note
hiv1; 70 (1 <i</). (19)

Let rankV!,; = ¢ where V;}; € R4, Since rankV}L | + dim N (V) =
(+1, we have dim N (VY ;) = 1. Hence, let N(V}} ) = {ev}, where ¢ € R,
and

V:{Zl}#OERZH, v €R, vy € RL

2

Noting that, A1, V;! =V} | Hy, similarly to (15), we have

7‘% = 517% - AHV;y = Vel+1 (561 - ﬁéy) )

Hy = : )
0 Y

where Hos; is nonsingular due to (19).
Then, note the following:

A least squares solution is obtained at step /¢
Jy such that r} = V!, (Be; — Hyy) =0
Jy such that Se; — Hyy € N (VL)
B— hnT’y =
dy such that
Y { —Hny =
Vi — hyy Hyy 'wa #0

1117

Hence, if v; — hi T Hy "o, £ 0, a least squares solution is obtained at
step /.

12



If v, — hllTHgl_II/g = 0, a least squares solution is not obtained at step
¢, and
151 hllT

vy Hy

=0.

Since Hy; is nonsingular and v # 0,

where s # 0 € R’. Then,
AnVy's = Vi Hes = Vv = 0.

Since Aj; is nonsingular, rankV,'! < ¢ —1. But since rankV}!,; = ¢, rankV}! =
(—1.

Thus, by induction on ¢, a least squares solution is obtained at step
( (2 < < j), or rankV}! = rank[v}] = 0, so that v} = 0. Then, r} =
vl — Ajjviy = 0, so a least squares solution is obtained at step 1.

Hence, if hi11;, #0 (1 <i < j—1), hj11; =0, a least squares solution is
obtained by step j (j <r+1). O

The necessity of the condition A;5 = 0 for GMRES to determine a least
squares solution of (1) for all b,xy € R™ was proved in Theorem 2.6 of
Hayami and Sugiharall].
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