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Abstract

It is proved that a λ-term that has a negatively non-duplicated
typing is always βη-equal to an almost affine λ-term.

1 Introduction

A λ-term is affine if no subterm contains more than one free occurrence of
the same variable. It is known that an affine λ-term is always typable (Hind-
ley, 1989) and its principal typing is balanced in the sense that each atomic
type occurs positively at most once and negatively at most once1 (Belnap,
1976; Hirokawa, 1992). Also, a balanced sequent can have at most one inhab-
itant up to βη-equality. This is known as the Coherence Theorem (Mints,
1981, 2000; Babaev and Solov’ev, 1982). It follows that up to βη-equality, an
affine λ-term is uniquely characterized by its principal typing. An additional
important property of balanced sequents is that a β-normal inhabitant of
a balanced sequent is always affine. A slightly weaker result of Jaśkowski
(1963) states that a balanced sequent that is provable in intuitionistic logic
has an affine inhabitant, which, together with the Coherence Theorem, im-
plies the stronger statement. A direct proof was also provided by Hirokawa
(1992). So there is a bijective correspondence between the affine λ-terms in
long normal form and the balanced sequents that are provable in intuition-
istic logic.

Previously, the author introduced the notion of an almost affine λ-
term in order to delineate a tractable class of “context-free grammars on
λ-terms” (Kanazawa, 2007, 2011).2 A λ-term is almost affine if it is typable

∗Research reported here was supported by the Japan Society for the Promotion of
Science under the Grant-in-Aid for Scientific Research (C) (19500019) and (C) (21500025).

1This definition of “balanced” is from Mints (2000). Babaev and Solov’ev (1982) and
Hirokawa (1992) use “balanced” in the weaker sense of containing at most two occurrences
of each atomic type.

2The manuscript (Kanazawa, 2011) is a full version of the conference paper (Kanazawa,
2007). In the latter, the notion of an almost affine λ-term did not appear due to space
limitations and relevant properties were stated for almost linear λ-terms (i.e., almost affine
λI-terms).
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and has a typing where any variable that occurs free more than once in
any subterm has an atomic type. An almost affine λ-term corresponds to
a derivation in sequent calculus where the structural rule of contraction is
restricted to atomic formulas (Aoto, 1999). A sequent is called negatively
non-duplicated if each atomic type occurs negatively at most once. Aoto
and Ono (1994) proved that all inhabitants of a negatively non-duplicated
sequent are βη-equal, generalizing the Coherence Theorem. Aoto (1999)
proved that a minimal intuitionistically provable sequent that has an al-
most affine inhabitant must be negatively non-duplicated. This was slightly
generalized in Kanazawa (2007, 2011), where it was proved that a princi-
pal typing of an almost affine λ-term is negatively non-duplicated. Thus,
almost affine λ-terms are also characterized by their principal typing up to
βη-equality.

An analogue of the theorem of Jaśkowski (1963) and Hirokawa (1992)
for negatively non-duplicated sequents was stated in Kanazawa (2011): any
inhabitant of a negatively non-duplicated sequent is βη-equal to an almost
affine λ-term. The proof of this theorem, however, was omitted in Kanazawa
(2011). The present paper fills this lacuna.3 In the course of our proof, we
also derive Aoto and Ono’s (1994) theorem as an immediate corollary.

A consequence of the main theorem of this paper is that a λ-term M
in long normal form β-expands to an almost affine λ-term if and only if
the principal typing of M is negatively non-duplicated. This is a useful
characterization, since the class of almost affine λ-terms is not closed under
β-reduction and we do not have an equally simple, purely syntactic charac-
terization of the long normal forms of almost affine λ-terms.

This paper is self-contained and does not presuppose familiarity with
Kanazawa (2011).

2 Simply Typed Lambda Calculus

This section fixes terminology and notations. We mostly follow Hindley
(1997).

2.1 Lambda Terms

We assume we are given a set X of variables, of which there are countably
many. The set Λ of (pure) λ-terms is the smallest superset of X such that

• M ∈ Λ and N ∈ Λ imply (MN) ∈ Λ, and

3The author first obtained a proof the theorem sometime in the spring of 2009 and
mentioned it during the course he co-taught with Sylvain Pogodalla at the 21st European
Summer School in Logic, Language and Information (Kanazawa and Pogodalla, 2009).
Since then, Bourreau and Salvati (2011) have independently obtained a characterization
of long normal inhabitants of negatively non-duplicated sequents. See the paragraph at
the end of this paper.
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• x ∈ X and M ∈ Λ imply (λx.M) ∈ Λ.

As usual, we allow ourselves to omit the outermost pair of parentheses, and
write MNP for (MN)P and λx1 . . . xn.M for λx1.(. . . .(λxn.M) . . . ).

It is best to be precise about α-equivalence. A position is a string over
{0, 1}. We write ε for the empty string, and write u ≤ v to mean u is a
prefix of v. Given a λ-term M , the set of positions of M , written pos(M),
is defined as follows:

pos(x) = {ε} if x ∈ X ,

pos(MN) = {ε} ∪ { 0u | u ∈ pos(M) } ∪ { 1u | u ∈ pos(N) },
pos(λx.M) = {ε} ∪ { 0u | u ∈ pos(M) }.

Note that pos(M) is always prefix-closed, and u1 ∈ pos(M) implies u0 ∈
pos(M).

If u is a position of M , the subterm of M occurring at u, written M/u,
is defined by

M/ε = M,

(MN)/0u = M/u,

(MN)/1u = N/u,

(λx.M)/0u = M/u.

Suppose M/u = x ∈ X . The occurrence of x at u in M is called free if
there is no prefix v of u such that M/v is of the form λx.N . Otherwise, the
occurrence of x at u is bound by the longest prefix v of u such that M/v is
of the form λx.N , in which case v is called the binder of u. The binding map
bM of M is a partial function from pos(M) to pos(M) such that bM (u) = v
holds if and only if v is the binder of u. We write FV(M) for the set of
variables that have free occurrences in M .

Let M,N be λ-terms. We say that M and N are α-equivalent and write
M ≡α N if the following conditions hold:

• pos(M) = pos(N),

• bM = bN ,

• for all u ∈ pos(M)− dom(bM ), M/u ∈ X implies M/u = N/u.

One can readily check that ≡α is an equivalence relation.
A λ-term M is regular (Loader, 1998) if for each x ∈ X , there is at most

one u ∈ pos(M) such that M/u is of the form λx.N , and if there is one,
there is no free occurrence of x in M . For every λ-term M , there is a regular
M ′ such that M ≡α M ′.

Let M,N be λ-terms and x be a variable. We say that N is free for x
in M if for all y ∈ FV(N) and for all u ∈ pos(M) such that x occurs free at
u, there is no v ≤ u such that M/v is of the form λy.R. When N is free for
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x in M , the result of substituting N for x in M , written M [x := N ], is the
λ-term that results from replacing all free occurrences of x in M by N .

An occurrence of a λ-term of the form (λx.M)N inside a λ-term is called
a β-redex. Note that whenever (λx.M)N occurs in a regular λ-term, N is
free for x in M , and consequently M [x := N ] is defined.

We write P →β Q when there are λ-terms P ′ and Q′ such that P ≡α P ′,
Q′ ≡α Q, P ′ is regular, and Q′ is the result of replacing a β-redex (λx.M)N
in P ′ by M [x := N ]. We write P �β Q to mean either P ≡α Q or P is
related to Q by the transitive closure of the relation →β. When P �β Q,
we say that P β-reduces to Q and Q β-expands to P . A λ-term P is in
β-normal form if it does not contain any β-redexes.

An occurrence of a λ-term of the form λx.Mx with x 6∈ FV(M) inside a
λ-term is called an η-redex. We write P →η Q when there are P ′, Q′ such
that P ≡α P ′, Q′ ≡α Q, and Q′ is the result of replacing an η-redex λx.Mx
in P ′ by M . We use �η in a similar way to �β. When P �η Q, we say
that P η-reduces to Q and Q η-expands to P . We write P =βη Q (read:
P is βη-equal to Q) when P and Q are related by the symmetric transitive
closure of the relation �β ∪�η.

2.2 Type Assignment System

We write At for the set of atomic types, which we assume to be countably
infinite. The set of types is the smallest superset T of At such that α ∈ T
and β ∈ T imply (α→ β) ∈ T . As usual, we omit the outermost pair of
parentheses when writing types, and we write α→ β→ γ for α→ (β→ γ).

The set of positions of a type α, written pos(α), is defined as follows:

pos(p) = {ε} if p ∈ At,

pos(α→ β) = {ε} ∪ { 1u | u ∈ pos(α) } ∪ { 0u | u ∈ pos(β) }.

Note that pos(α) is always prefix-closed, and u1 ∈ pos(α) if and only if
u0 ∈ pos(α). A position u is positive if its parity (i.e., the number of 1s in
u modulo 2) is 0, and negative if its parity is 1.

If u is a position of α, the subtype of α occurring at u, written α/u, is
defined by

α/ε = α,

(α→ β)/0u = β/u,

(α→ β)/1u = α/u,

If α/u = β, we say that β occurs at position u in α, and the occurrence of
β at position u is positive (resp. negative) if u is positive (resp. negative).
If β has a positive (resp. negative) occurrence in α, we say that β occurs
positively (resp. negatively) in α.

An occurrence of β at position u in α is a subpremise if u = u′1 for
some u′. Such an occurrence is a positive (resp. negative) subpremise if it
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is a positive (resp. negative) occurrence. We also say that β is a positive
(negative) subpremise of α if β occurs as a positive (negative) subpremise in
α, and write Possub(α) and Negsub(α) for the set of types that are positive
and negative subpremises of α, respectively.

The tail of a type α = α1→· · ·→α→ p, written tail(α), is p. Note that
if u ∈ pos(α)∩ 0∗ and neither u0 nor u1 is in pos(α), then α/u is the tail of
α.

A type envioronment is a function from a finite subset of X to T (under-
stood as a set of ordered pairs). An element of a type environment (x, α) is
written as x : α, and a type environment is usually written in the form of a
list x1 : α1, . . . , xn : αn, with the understanding that x1, . . . , xn are pairwise
distinct. We use upper-case Greek letters Γ,∆, . . . for type environments.
We also use usual notations for functions, like Γ(x) (the type α such that
x : α ∈ Γ), dom(Γ) (the domain of Γ), ran(Γ) (the range), and Γ � X (Γ
restricted to a set X of variables). An expression of the form Γ ⇒ α, con-
sisting of a type environment, the symbol⇒, and a type, is called a sequent.
A typing judgment is an expression of the form Γ⇒M :α, which is like a se-
quent except that it contains in addition a λ-term M (and a colon following
it).

The following axiom schema and rules of inference determine what typing
judgments are derivable:

Axiom:
x : α⇒ x : α

Introduction rule:

Γ⇒M : β

Γ− {x : α} ⇒ λx.M : α→ β
→I provided Γ ∪ {x : α} is a type environment.

Elimination rule:

Γ⇒M : α→ β ∆⇒ N : α

Γ ∪∆⇒MN : β
→E provided Γ ∪∆ is a type environment.

The proviso in→I means that either x :α ∈ Γ or x 6∈ dom(Γ). In an instance
of the elimination rule, the left premise is called the major premise, and the
right premise is called the minor premise.

The rules of introduction and elimination are understood in the usual
way to sanction inference steps. A deduction of Γ ⇒ M : α is a tree whose
nodes are labeled by typing judgments such that

• the root node is labeled by Γ⇒M : α,

• each leaf node is labeled by an axiom, and

• each non-leaf node is sanctioned by the introduction rule (in case it
has one child) or the elimination rule (in case it has two children).
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y : p2→ p2→ p1 ⇒ y : p2→ p2→ p1 x : p2 ⇒ x : p2
y : p2→ p2→ p1, x : p2 ⇒ yx : p2→ p1 →E x : p2 ⇒ x : p2

y : p2→ p2→ p1, x : p2 ⇒ yxx : p1 →E
y : p2→ p2→ p1 ⇒ λx.yxx : p2→ p1

→I z : p3→ p2 ⇒ z : p3→ p2 w : p3 ⇒ w : p3
z : p3→ p2, w : p3 ⇒ zw : p2 →E

y : p2→ p2→ p1, z : p3→ p2, w : p3 ⇒ (λx.yxx)(zw) : p1
→E

Figure 1: An example of a deduction.

y : p2→ p2→ p1 x : p2
yx : p2→ p1 →E x : p2

yxx : p1 →E
λx.yxx : p2→ p1

→I z : p3→ p2 w : p3
zw : p2 →E

(λx.yxx)(zw) : p1
→E

Figure 2: A deduction in abbreviated form.

A deduction of Γ⇒M :α is called a deduction for M . If there is a deduction
of Γ ⇒ M : α, we write ` Γ ⇒ M : α and say that Γ ⇒ M : α is derivable.
A sequent Γ ⇒ α is inhabited if there is a λ-term M such that Γ ⇒ M : α
is derivable, in which case M is called an inhabitant of Γ⇒ α and Γ⇒ α is
called a typing of M . A λ-term M is typable if it has a typing. Note that if
Γ⇒ α is a typing of M , then dom(Γ) = FV(M).4

Clearly, the structure of a deduction D for M exactly reflects the struc-
ture of M , and we can use positions in pos(M) to refer to occurrences of
judgments in D.

A typing Γ⇒ α of a λ-term M is principal if for every typing ∆⇒ β of
M , there is a type substitution σ such that β = ασ and for every variable
x ∈ FV(M), ∆(x) = Γ(x)σ. Similarly, a principal deduction for M is a
deduction for M from which all other deductions for M can be obtained
by type substitution. It is known that every typable λ-term has a principal
typing and principal deduction.

Figure 1 shows an example of a deduction, with the name of the rule
written next to each inference step. This deduction is a principal deduction
for (λx.yxx)(wz).

Note that the type environment ∆ in each typing judgment ∆ ⇒ N :
β appearing in a deduction is recoverable from the remaining part of the
deduction. For this reason, we sometimes use an abbreviated notation for
a deduction where the type environment and the symbol ⇒ are dropped.
Figure 2 shows the deduction in Figre 1 under this convention.

The relation of β-reduction naturally extends to deductions. If D is a
deduction of Γ ⇒ M : α and M →β M

′, then there is a deduction D′ of
Γ � FV(M ′)⇒M ′ : α induced by the given one-step β-reduction from M to
M ′. This is written D →β D′. Similarly, we write D �β D′ and say that

4This property will not hold if we use an alternative formulation of the axiom which is
common in the literature: Γ, x :α⇒ x :α. It is more convenient for our purposes to adopt
a definition that implies this property.
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D β-reduces to D′ when either the associated λ-terms are α-equivalent and
D and D′ are otherwise identical or D and D′ are related by the transitive
closure of →β. We say that a deduction of Γ ⇒ M : α is in β-normal form
when M is β-normal. It is known that every deduction β-reduces to one in
β-normal form.

Similarly, if D is a deduction of Γ ⇒ M : α and M �η M
′, then there

is an induced deduction D′ of Γ ⇒ M ′ : α, in which case we say that D′
η-reduces to D and write D �η D′.

A deduction is said to be in η-long form if every occurrence of a judgment
of the form ∆ ⇒ N : β → γ in it is either the conclusion of an instance of
the introduction rule or the major premise of an instance of the elimination
rule. The deduction in Figure 1 is in η-long form. Every deduction can be
η-expanded to a deduction of the same judgment in η-long form.

A λ-term M is η-long relative to Γ ⇒ α if there is a deduction of Γ ⇒
M : α that is η-long. Similarly, a λ-term M is in η-long β-normal form (or
long normal form for short) relative to Γ ⇒ α if it is β-normal and η-long
relative to Γ ⇒ α. We simply say that M is in η-long β-normal form (or
long normal form) if M is in η-long β-normal form relative to some typing
(or, equivalently, relative to its principal typing). Note that if a λ-term M
has a typing Γ ⇒ α, then there is always a λ-term M ′ =βη M that is in
η-long β-normal form relative to Γ′ ⇒ α for some Γ′ ⊆ Γ.

3 Negatively Non-duplicated Sequents

In this section, we prove some lemmas that will be important in the proof
of our theorem in the next section. Along the way, Aoto and Ono’s 1994
theorem is derived as an immediate corollary.

Let Γ ⇒ α0 be a sequent, where Γ = x1 : α1, . . . , xn : αn. The set of
positions of Γ⇒ α0, written pos(Γ⇒ α0), is defined by

pos(Γ⇒ α0) =
n⋃
i=0

{ (i, u) | u ∈ pos(αi) }.

An occurrence of a type γ at position (i, u) ∈ pos(Γ⇒ α0) is positive if i = 0
and u is positive, or 1 ≤ i ≤ n and u is negative; otherwise, the occurrence
is negative.

We say that γ is a positive (negative) subpremise of Γ ⇒ α0 if γ is a
positive (negative) subpremise of α1→· · ·→αn→α0. We let Possub(Γ⇒ α0)
and Negsub(Γ ⇒ α0) denote the set of positive subpremises and the set of
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negative subpremises of Γ⇒ α0, respectively. It is easy to see the following:

Possub(Γ⇒ α0) = Possub(α0) ∪
n⋃
i=1

Negsub(αi),

Negsub(Γ⇒ α0) = Negsub(α0) ∪
n⋃
i=1

({αi} ∪ Possub(αi)).

Lemma 1. If an axiom x : β ⇒ x : β occurs in a deduction of Γ ⇒ M : α
in β-normal form, then β is a negative subpremise of Γ⇒ α.

Proof. Let D be a deduction of x1 : α1, . . . , xn : αn ⇒ M : α in β-normal
form, and suppose x : β ⇒ x : β occurs in it. We show by induction on D
that one of the following conditions holds:

(i) D ends in →I and β is a negative subpremise of α.

(ii) β ∈ {αi} ∪ Possub(αi) for some i.

For the induction basis, if D is just an axiom x : β ⇒ x : β, then β = α1 and
(ii) is clearly satisfied.

For the induction step, first suppose that D ends in→I. Then α = γ→δ
for some γ, δ. By the induction hypothesis, either β is a negative subpremise
of δ or β is in

{γ} ∪ Possub(γ) ∪
n⋃
i=1

({αi} ∪ Possub(αi)).

If β is a negative subpremise of δ, then β is a negative subpremise of α,
so D satisfies (i). If β is in {αi} ∪ Possub(αi), D satisfies (ii). If β is in
{γ} ∪ Possub(γ), then β is a negative subpremise of α, so D satisfies (i).

Now suppose that D ends in →E. Then D is of the form

D1

∆1 ⇒ xh ~P : γ→ α
D2

∆2 ⇒ Q : γ

x1 : α1, . . . , xn : αn ⇒ xh ~PQ : α
→E

where M = xh ~PQ, αh = ~δ→ γ→ α, and ∆1 ∪∆2 = {x1 : α1, . . . , xn : αn}.
Since D is in β-normal form, D1 does not end in →I. If x : β occurs in
D1, then by induction hypothesis, β is in {αi} ∪Possub(αi) for some i such
that xi : αi ∈ ∆1, so D satisfies (ii). If x : β occurs in D2, then by induction
hypothesis, either β is in {αi}∪Negsub(αi) for some i such that xi :αi ∈ ∆2,
or β is a negative subpremise of γ, in which case β is a positive subpremise
of αh. In either case, D satisfies (ii).
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A deduction (in abbreviated notation) in η-long β-normal form for a
λ-term M can be uniquely written in the following way:5

y : β1→ · · · → βn→ p
D1

M1 : β1 . . .
Dn

Mn : βn

yM1 . . .Mn : p
→E

λx1 . . . xl.yM1 . . .Mn : α1→ · · · → αl→ p
→I

where y ∈ FV(M) ∪ {x1, . . . , xl} and each subdeduction Di for Mi is in
η-long β-normal form.

A sequent Γ ⇒ α is said to be negatively non-duplicated if no atomic
type has more than one negative occurrence in it (Aoto, 1999). We say that
Γ⇒ α has the negative subpremise property if for all β, γ ∈ Negsub(Γ⇒ α),
tail(β) = tail(γ) implies β = γ. The following is obvious from the definition
of a subpremise.

Lemma 2. If Γ⇒ α is a negatively non-duplicated sequent, then it has the
negative subpremise property.

Lemma 3. Let Γ⇒ α be a sequent with the negative subpremise property,
and suppose that D is a deduction of Γ ⇒ M : α in β-normal form. Then
for every judgement of the form ∆⇒ N : q that occurs in D, ∆⇒ q has the
negative subpremise property.

Proof. Suppose that y1 : β1, . . . , ym : βm ⇒ N : q occurs in D. Then since
yi :βi ⇒ yi :βi must occur in D, by Lemma 1, each βi is a negative subpremise
of Γ⇒ α. It follows that Negsub(y1 :β1, . . . , ym :βm ⇒ q) ⊆ Negsub(Γ⇒ α),
and y1 : β1, . . . , ym : βm ⇒ q has the negative subpremise property.

Lemma 4. Let Γ ⇒ p be a sequent with the negative subpremise property.
Suppose that D is a deduction of Γ⇒M : p in η-long β-normal form. If a
typing judgement Γ′ ⇒M ′ : p occurs in D, then M = M ′.

Proof. We prove the lemma by induction on D. Since D is in η-long β-
normal form, it has the form

y : β1→ · · · → βn→ p
D1

M1 : β1 . . .
Dn

Mn : βn

yM1 . . .Mn : p
→E

where M = yM1 . . .Mn. The subdeduction D′ of D that ends in Γ′ ⇒M ′ :p
must also have a similar form:

y′ : β′1→ · · · → β′n′ → p
D′1

M ′1 : β′1 . . .
D′n

M ′n′ : β
′
n′

y′M ′1 . . .M
′
n′ : p

→E

5As usual, a double horizontal line abbreviates a sequence of inference steps sanctioned
by the same inference rule.
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where M ′ = y′M ′1 . . .M
′
n′ . By Lemma 1, both β1 → · · · → βn → p and

β′1→· · ·→ β′n′→ p are negative subpremises of Γ⇒ p. Since Γ⇒ p has the
negative subpremise property, we have n = n′ and βi = β′i for i = 1, . . . , n.

Now suppose M 6= M ′. Then for some i, M ′ is a subterm of Mi and D′
is a subdeduction of Di. Let βi = γ1→ · · · → γk→ q. Then Di and D′i look
like the following:

E
∆, z1 : γ1, . . . , zk : γk ⇒ N : q

∆⇒ λz1 . . . zk.N : γ1→ · · · → γk→ q
→I

E ′
∆′, z′1 : γ1, . . . , z

′
k : γk ⇒ N ′ : q

∆′ ⇒ λz′1 . . . z
′
k.N

′ : γ1→ · · · → γk→ q
→I

where Mi = λz1 . . . zk.N and M ′i = λz′1 . . . z
′
k.N

′. By Lemma 3, ∆, z1 :
γ1, . . . , zk : γk ⇒ q has the negative subpremise property. Since D′ is a
subdeduction of Di, the deduction E ′ must be a proper subdeduction of E
and the λ-term N ′ must be a proper subterm of N . But the induction
hypothesis applied to E gives N = N ′, a contradiction.

Lemma 5. Let Γ ⇒ α be a negatively non-duplicated sequent, and let
D : Γ ⇒ M : α be a deduction in η-long β-normal form. For every oc-
currence of a judgment ∆ ⇒ β in D that is not a major premise of →E,
the sequent ∆⇒ β is negatively non-duplicated.

Proof. We prove the lemma by induction on D.
Case 1. D ends in →I. Then M is of the form λx.M1, α = α1 → α0,

and D is of the following form:

D1
Γ1 ⇒M1 : α0

Γ⇒ λx.M1 : α1→ α0
→I

where Γ1 = (Γ, x :α1) �FV(M1). Clearly, D1 is in η-long β-normal form and
Γ1 ⇒ α0 is negatively non-duplicated. The induction hypothesis applies to
D1 yields the desired conclusion.

Case 2. D does not end in →I. Since D is in η-long β-normal form, it
must be that α = p ∈ At, M is of the form M = yM1 . . .Mn (n ≥ 0), and
the deduction D has the following form:6

y : β1→ · · · → βn→ p
D1

Γ1 ⇒M1 : β1 . . .
Dn

Γn ⇒Mn : βn

Γ⇒ yM1 . . .Mn : p
→E

6Here we are mixing abbreviated notation y : β1→ · · ·→ βn→ p (standing for y : β1→
· · · → βn→ p⇒ y : β1→ · · · → βn→ p) in the otherwise official depiction of D.
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where
Γi = Γ � FV(Mi)

for i = 1, . . . , n. Clearly, each Di is in η-long β-normal form. By Lemma 4,
it is easy to see that y : β1 → · · · → βn → α 6∈ Γi, and this implies that
Γi ⇒ βi is negatively non-duplicated. The desired conclusion now follows
by the induction hypothesis applied to D1, . . . ,Dn.

We call a type environment Γ = {x1 :α1, . . . , xn :αn} injective if αi = αj
implies i = j.

Lemma 6. Suppose that Γ ⇒ α and Γ′ ⇒ α are negatively non-duplicated
sequents, Γ ∪ Γ′ is an injective type environment, and Γ ∪ Γ′ ⇒ α has the
negative subpremise property. If ` Γ ⇒ M : α and ` Γ′ ⇒ M ′ : α, then
M =βη M

′.

Proof. We assume that M and M ′ are in η-long β-normal form relative to
Γ ⇒ p and Γ′ ⇒ p, respectively, and show M ≡α M ′, by induction on the
size of M . Clearly this is sufficient. Let D and D′ be deductions in η-long
β-normal form of Γ⇒M : α and Γ′ ⇒M ′ : α, respectively.

Case 1. α = α1→α0. Since D and D′ are in η-long β-normal form, they
have the following form:

D1
Γ1 ⇒M1 : α0

Γ⇒ λx.M1 : α1→ α0
→I

D′1
Γ′1 ⇒M ′1 : α0

Γ′ ⇒ λx′.M ′1 : α1→ α0
→I

where
M = λx.M1, M ′ = λx′.M ′1,

and
Γ1 = (Γ, x : α1) � FV(M1), Γ′1 = (Γ′, x′ : α1) � FV(M ′1).

Pick a fresh variable z and let

N1 = M1[x := z], N ′1 = M ′1[x
′ := z].

Then M ≡α λz.N1 and M ′ ≡α λz.N ′1. Let ∆ = (Γ, z : α1) � FV(N1) and
∆′ = (Γ′, z :α1) �FV(N ′1). Then N1 and N ′1 are η-long β-normal inhabitants
of

∆⇒ N1 : α0 and ∆′ ⇒ N ′1 : α0,

respectively, and it is easy to see that ∆ ⇒ α0 and ∆′ ⇒ α0 satisfy the
assumptions of the lemma. Since N1 is shorter than M , the induction hy-
pothesis applies to N1 and gives N1 ≡α N ′1. It follows that M ≡α M ′.

Case 2. α = p ∈ At. Since Γ ∪ Γ′ ⇒ p has the negative subpremise
property, there is at most one type in ran(Γ∪Γ′) whose tail is p. Since Γ∪Γ′
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is an injective type environment, there must be some y : β1→ · · · → βn→ p
in Γ ∩ Γ′ such that D and D′ are of the following form:

y : β1→ · · · → βn→ p
D1

Γ1 ⇒M1 : β1 . . .
Dn

Γn ⇒Mn : βn

Γ⇒ yM1 . . .Mn : p
→E

y : β1→ · · · → βn→ p
D′1

Γ′1 ⇒M ′1 : β1 . . .
D′n

Γ′n ⇒M ′n : βn

Γ′ ⇒ yM ′1 . . .M
′
n : p

→E

where
M = yM1 . . .Mn, M ′ = yM ′1 . . .M

′
n

and
Γi = Γ � FV(Mi), Γ′i = Γ′ � FV(M ′i)

for i = 1, . . . , n.
By Lemma 5, Γi ⇒ βi and Γ′i ⇒ βi are negatively non-duplicated. Since

Γi∪Γ′i ⊆ Γ∪Γ′ and βi is a negative subpremise of β1→· · ·→βn→p ∈ ran(Γ),
we see that Γi∪Γ′i is an injective type environment and Γi∪Γ′i ⇒ βi has the
negative subpremise property. Since Mi is shorter than M , the induction
hypothesis applies to Mi and gives Mi ≡α M ′i . Therefore, M ≡α M ′.

Theorem 7 (Aoto and Ono). Suppose that Γ ⇒ M : α and ∆ ⇒ N : α
are derivable and Γ ∪∆ ⇒ α is a negatively non-duplicated sequent. Then
M =βη N .

Proof. Immediate from Lemma 6.

4 Negatively Non-duplicated Sequents and Al-
most Affine λ-terms

A deduction is almost affine if every instance of the elimination rule in it

Γ⇒M : α→ β ∆⇒ N : α

Γ ∪∆⇒MN : β
→E

satisfies the condition ran(Γ∩∆) ⊆ At. A λ-term M is almost affine relative
to Γ ⇒ α if there is an almost affine deduction of Γ ⇒ M : α. We simply
say that M is almost affine if M is almost affine relative to some typing
(or, equivalently, relative to its principal typing). Figure 1 is an example of
an almost affine deduction. Unlike the class of affine λ-terms, the class of
almost affine λ-terms is clearly not closed under β-reduction. For instance,
the λ-term (λx.yxx)(zw) in Figure 1 β-reduces to y(zw)(zw), which is not
almost affine.
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Kanazawa (2011, Theorem 3.41) gives a simple proof that a principal
typing of an almost affine λ-term is always negatively non-duplicated. In
this section, we show that a long normal inhabitant of a negatively non-
duplicated sequent always β-expands to some almost affine λ-term.

We say that a β-reduction step from a deduction D of Γ ⇒ M : α to
a deduction D′ of Γ � FV(M ′) ⇒ M ′ : α is atomic duplicating if in the
subdeduction of D that is associated with the contracted β-redex (λx.P )Q
of M

...
∆1 ⇒ P : γ

∆1 − {x : p} ⇒ λx.P : p→ γ
→I

...
∆2 ⇒ Q : p

(∆1 − {x : p}) ∪∆2 ⇒ (λx.P )Q : γ
→E

the type p is atomic and the λ-term P contains more than one free occurrence
of x.

We need a few more pieces of terminology for the following proofs. Sup-
pose that a λ-term of the form xP1 . . . Pn occurs at position u of a λ-term
M . Then the occurrence of Pi at position u0n−i1 is called an argument
of the occurrence of x at position u0n. Suppose moreover that Pi has the
form λz1 . . . zm.λy.Q. Then we say that the occurrence of x at u0n directly
controls the occurrences of y whose binder is the occurrence of λy.Q at
u0n−i10m. We say that an occurrence of a variable x controls an occurrence
of a variable y if they stand in the transitive closure of the relation of di-
rect control (Tatsuta and Dezani-Ciancaglini, 2006). It is easy to see that if
M = M1M2 is a λ-term in β-normal form, then every bound occurrence of
a variable in M is controlled by some free occurrence of a variable in M .

Let M be a typable λ-term, and suppose that an occurrence of x at
position u of M controls an occurrence of y at position v. Let D be a
deduction for M , and suppose that x : α ⇒ x : α and y : β ⇒ y : β are the
occurrences of axioms at positions u and v of D, respectively. Then it is
easy to see that β is a positive subpremise of α.

Lemma 8. If Γ ⇒ α is a negatively non-duplicated sequent and D is a
deduction of Γ ⇒ M : α in η-long β-normal form, then there is an almost
affine deduction D′ of Γ⇒M ′ :α such that D′ �β D by atomic duplicating
β-reduction steps.

Proof. The proof is by induction on the complexity of (i.e., the number of
occurrences of → in) Γ⇒ α. We assume that M is regular.

Case 1. D ends in →I. Then α = α1 → α0, M is of the form λx.M1,
and D looks as follows:

D1
Γ1 ⇒M1 : α0

Γ⇒ λx.M1 : α1→ α0
→I

13



where Γ1 = (Γ, x : α1) � FV(M1). Since D1 must be in η-long β-normal
form and Γ1 ⇒ α0 is less complex than Γ⇒ α, we can apply the induction
hypothesis to D1 and obtain an almost affine deduction D′1 of Γ1 ⇒M ′1 :α0

that β-reduces to D1 by atomic duplicating β-reduction steps. Let D′ be
the following deduction:

D′1
Γ1 ⇒M ′1 : α0

Γ⇒ λx.M ′1 : α1→ α0
→I

Then D′ is an almost affine deduction and D′ β-reduces to D by atomic
duplicating β-reduction steps.

Case 2. D does not end in →I. Since D is in η-long β-normal form,
α = p ∈ At, M is of the form yM1 . . .Mn (n ≥ 0), and the deduction D is
of the following form:

y : β1→ · · · → βn→ p
D1

Γ1 ⇒M1 : β1 . . .
Dn

Γn ⇒Mn : βn

y : β1→ · · · → βn→ p,Γ1 ∪ · · · ∪ Γn ⇒ yM1 . . .Mn : p
→E

Here, Γi = Γ�FV(Mi). Note that y 6∈ FV(M1)∪· · ·∪FV(Mn) by Lemmas 2
and 4. Let

Γ̂ = {x : γ ∈ Γ | γ 6∈ At and x : γ ∈ Γi ∩ Γj for some i, j such that i 6= j }.

Case 2.1. Γ̂ = ∅. Then for i = 1, . . . , n,

ran(({y : β1→ · · · → βn→ p} ∪ Γ1 ∪ · · · ∪ Γi−1) ∩ Γi) ⊆ At. (∗)

Since Γi ⇒ βi is negatively non-duplicated and Γi ⇒ βi is less complex
than Γ ⇒ p, we can apply the induction hypothesis to Di and obtain an
almost affine deduction D′i of Γi ⇒ Mi : βi that β-reduces to Di by atomic
duplicating β-reduction steps. Let D′ be the following deduction:

y : β1→ · · · → βn→ p
D′1

Γ1 ⇒M ′1 : β1 . . .
D′n

Γn ⇒M ′n : βn

y : β1→ · · · → βn→ p,Γ1 ∪ · · · ∪ Γn ⇒ yM ′1 . . .M
′
n : p

→E

By (∗), D′ is an almost affine deduction. It is clear that D′ β-reduces to D
by atomic β-reduction steps.

Case 2.2. Γ̂ 6= ∅. In this case we must have n ≥ 1. Suppose Γ̂ =
{y1 : α1, . . . , ym : αm} and qi = tail(αi) for i = 1, . . . ,m.

Our goal is to find a suitable k for which there exist Γ′,Γ′′ ⊆ Γ satisfying
the following conditions:

Γ′ ∪ Γ′′ = Γ,

ran(Γ′ ∩ Γ′′) ⊆ At,

whenever ∆⇒ yk ~P : qk occurs in D, it holds that ∆ = Γ′′.

14



If such a k is found, then we can see that yk always occurs with the same
arguments up to α-equivalence, and there are a λ-term N with z ∈ FV(N)−
FV(M) and a sequence of λ-terms ~P such that

M ≡α N [z := yk ~P ].

Then we can “extract” (α-variants of) the deduction F of Γ′′ ⇒ yk ~P : qk
from D and form a deduction E of Γ′, z : qk ⇒ N [z] : p so that the deduction

E
Γ′, z : qk ⇒ N : p

Γ′ ⇒ λz.N : qk→ p
→I F

Γ′′ ⇒ yk ~P : qk

Γ′ ∪ Γ′′ ⇒ (λz.N)(yk ~P ) : p
→E

β-reduces to D by an atomic duplicating β-reduction step. Since Γ′, z:qk ⇒ p
and Γ′′ ⇒ qk must both be negatively non-duplicated and less complex than
Γ⇒ p, we can then apply the induction hypothesis to E and F .

We begin by showing the following:

Claim. For every i = 1, . . . ,m, there are sets

Ti ⊆
⋃
j 6=i

({αj} ∪ Possub(αj)) and Ui ⊆ ran(Γ) ∩At

such that whenever ∆⇒ yi ~P :qi occurs in D, we have ran(∆) = {αi}∪Ti∪Ui.

First, we note that ran(∆) must be constant for every such occurrence.
For, suppose that ∆′ ⇒ yi ~P ′ : qi also occurs in D. By Lemma 5, ∆ ⇒ qi
and ∆′ ⇒ qi are both negatively non-duplicated. By Lemma 1, ran(∆) ∪
ran(∆′) ⊆ Negsub(Γ ⇒ p), so ∆ ∪ ∆′ ⇒ qi has the negative subpremise
property. Define a renaming of variables θ by

θ(z′) =

{
z if ∆(z) = ∆′(z′) for some z,

z′ otherwise.

Then ∆ ⇒ yi ~P : qi and the result of applying θ to ∆′ ⇒ yi ~P ′ : qi together
satisfy the conditions of Lemma 6, and we can conclude ran(∆) = ran(∆′).

Now suppose that ∆⇒ yi ~P : qi occurs in Dj . Then by Lemma 1 again,

ran(∆) ⊆ Negsub(Γj ⇒ βj)

=
⋃
{ {γ} ∪ Possub(γ) | γ ∈ ran(Γj)} ∪Negsub(βj).

Since yi :αi ∈ Γ̂, the same condition must hold with k in place of j for some
k 6= j. Since y :β1→· · ·→βn→p ∈ Γ and Γ⇒ p is negatively non-duplicated,
we have Negsub(βj) ∩Negsub(βk) = ∅. It follows that

ran(∆) ⊆
⋃
{ {γ} ∪ Possub(γ) | γ ∈ ran(Γj ∩ Γk) }

⊆ At ∪
⋃
{ {γ} ∪ Possub(γ) | γ ∈ ran(Γ̂) }.
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Since yi : αi ∈ ∆ and ∆⇒ qi is negatively non-duplicated, we have

ran(∆− {yi : αi}) ∩ Possub(αi) = ∅.

This establishes the claim.
We define two relations ≺1 and ≺2 on {1, . . . ,m}:

i ≺1 j iff Ti ∩ Possub(αj) 6= ∅
i ≺2 j iff αi ∈ Tj

The relation i ≺1 j means that yi always occurs with an argument that
contains a bound variable controlled by an outside occurrence of yj . (No-
tice that the fact that Γ ⇒ p is negatively non-duplicated means that any
occurrence of a variable of type δ ∈ Possub(αj) must be controlled by an
occurrence of yj .) The relation i ≺2 j holds if and only if yj always occurs
with an argument that contains yi as a free variable.

Since {α1, . . . , αm} ⊆ ran(Γ) and Γ ⇒ p is negatively non-duplicated,
({αi} ∪ Possub(αi)) ∩ ({αj} ∪ Possub(αj)) = ∅ if i 6= j. Since Ti ⊆⋃
j 6=i({αj} ∪ Possub(αj)), it follows that both ≺1 and ≺2 are irreflexive.

By the above characterization of ≺1 and ≺2, it is easy to see that ≺2 is
transitive and i ≺1 j implies i ≺2 j. Therefore, the transitive closure ≺+

1

of ≺1 is included in ≺2 and is thus also irreflexive. This means that both
≺+

1 and ≺2 are strict partial orders. Note that i ≺+
1 j implies that every

occurrence of yi occurs inside an argument of an occurrence of yj , while
i ≺2 j is consistent with the possibility that some occurrence of yi does not
occur inside an argument of any occurrence of yj . So in general, ≺+

1 can be
a proper subrelation of ≺2.

We now show

(†) If i ≺1 j and i ≺2 h, then j ≺2 h or j = h or h ≺1 j.

(‡) If i ≺+
1 j and i ≺2 h, then j ≺2 h or j = h or h ≺+

1 j.

To show (†), suppose i ≺1 j and i ≺2 h. Since i ≺2 h, we have αi ∈ Th
and a judgment of the form ∆ ⇒ yi ~P : qi with ran(∆) = {αi} ∪ Ti ∪ Ui
must occur in a deduction of a judgment of the form Θ ⇒ yh ~Q : qh with
ran(Θ) = {αh} ∪ Th ∪ Uh. Since i ≺1 j, there is a type δ ∈ Ti ∩ Possub(αj).
By Lemma 1, δ must be a negative subpremise of Θ⇒ qh, so

δ ∈ {αh} ∪ Possub(αh) ∪
⋃
{{ γ} ∪ Possub(γ) | γ ∈ Th } ∪ Uh.

Since {αh, αj}∪Uh ⊆ ran(Γ) and Γ⇒ p is negatively non-duplicated, δ 6= αh
and δ 6∈ Uh, which leaves two cases: (i) δ ∈ Possub(αh), or (ii) δ ∈ {γ} ∪
Possub(γ) for some γ ∈ Th. If (i) holds, Possub(αj) ∩ Possub(αh) 6= ∅ and
it follows that j = h. If (ii) holds, either αj ∈ Th and hence j ≺2 h, or
Th ∩ Possub(αj) 6= ∅ and hence h ≺1 j.
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The property (‡) can be proved by induction on n ≥ 1 such that i ≺n1 j.
The property (†) takes care of the induction basis (n = 1). For the induction
step, suppose i ≺n1 j′ ≺1 j and i ≺2 h. By induction hypothesis, j′ ≺2 h or
j′ = h or h ≺+

1 j′. In case j′ = h or h ≺+
1 j′, since j′ ≺1 j, we have h ≺+

1 j.
In case j′ ≺2 h, (†) gives j ≺2 h or j = h or h ≺1 j.

Now let k be a ≺2-minimal element among the ≺+
1 -maximal elements of

{1, . . . ,m}. Using (‡), we can show that i ≺2 k implies i ≺+
1 k. To see this,

suppose i ≺2 k. Since k is ≺2-minimal among the ≺+
1 -maximal elements, i

is not ≺+
1 -maximal. Let j be a ≺+

1 -maximal element such that i ≺+
1 j. Then

since j 6≺2 k and k 6≺+
1 j, we can conclude by (‡) that j = k and hence i ≺+

1 k.
This means that if some occurrence of yi is in an argument of an occurrence
of yk, every occurrence of yi is in an argument of an occurrence of yk. Since
the ≺+

1 -maximality of k means Tk ⊆ ran(Γ̂), we have {αk}∪Tk∪Uk ⊆ ran(Γ).

Let Γ′′ = {x : Γ(x) | Γ(x) ∈ {αk} ∪ Tk ∪ Uk }. Then whenever ∆⇒ yk ~P : qk
occurs in D for some ~P , we must have ∆ = Γ′′. By Theorem 7, ~P is also
unique up to α-equivalence. Let F be a subdeduction of D that ends in
Γ′′ ⇒ yk ~P : qk. Clearly, F is in η-long β-normal form. By the above remark,
if yi : αi ∈ Γ′′, every occurrence of yi in M is inside an occurrence of (an
α-variant of) yk ~P .

Pick a fresh variable z. Let N be the result of replacing every occurrence
of (an α-variant of) yk ~P in M by z, and let E be the result of similarly replac-
ing every occurrence of (an α-variant of) F in D by a single-line deduction
z : qk ⇒ z : qk. Then E must be a deduction of a judgment Γ′, z : qk ⇒ N : p
in η-long β-normal form for some type environment Γ′ that satisfies

Γ′ ∪ Γ′′ = Γ

Γ′ ∩ Γ′′ ⊆ Uk ⊆ At.

Let D̃ be the following deduction:

E
Γ′, z : qk ⇒ N : p

Γ′ ⇒ λz.N : qk→ p
→I F

Γ′′ ⇒ yk ~P : qk

Γ⇒ (λz.N)(yk ~P ) : p
→E

Clearly, D̃ β-reduces to D by an atomic duplicating β-reduction step.
Since Γ′, z : qk ⇒ p and Γ′′ ⇒ qk are both less complex than Γ ⇒ p,

we can apply the induction hypothesis to E and F , obtaining almost affine
deductions E ′ and F ′ of Γ′, z :qk ⇒ N ′ :p and of Γ′′ ⇒ Q :qk, which β-reduce
to E and F by atomic duplicating β-reduction steps, respectively. Let D̃′ be
the following deduction:

E ′
Γ′, z : qk ⇒ N ′ : p

Γ′ ⇒ λz.N ′ : qk→ p
→I F ′

Γ′′ ⇒ Q : qk
Γ⇒ (λz.N ′)Q : p

→E
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Then D̃′ is an almost affine deduction that β-reduces to D by atomic dupli-
cating β-reduction steps.

We have exhausted all cases and the inductive proof is complete.

Theorem 9. Every inhabitant of a negatively non-duplicated sequent is βη-
equal to an almost affine λ-term.

Proof. Let Γ ⇒ α be a negatively non-duplicated sequent and suppose `
Γ⇒M :α. Let M ′ be a λ-term in β-normal form such that M �β M

′. We
have ` Γ′ ⇒ M ′ : α, where Γ′ = Γ � FV(M ′). The λ-term M ′ η-expands to
an M ′′ that is in η-long β-normal form relative to Γ′ ⇒ α. Since Γ′ ⇒ α is
negatively non-duplicated, by Lemma 8, there is a λ-term N that is almost
affine relative to Γ′ ⇒ α such that N �β M

′′. We have N =βη M .

Corollay 10. Let M be a λ-term in η-long β-normal form. Then M β-
expands to an almost affine λ-term if and only if M has a negatively non-
duplicated principal typing.

Proof. The “if” direction is immediate from Lemma 8. For the “only if”
direction, suppose that M ′ �β M and M ′ is almost affine. By the theorem
of Kanazawa (2011) mentioned earlier, M ′ has a negatively non-duplicated
principal typing Γ⇒ α. Then M is an inhabitant of Γ �FV(M)⇒ α, which
must be negatively non-duplicated.

Remark. We cannot weaken “long normal form” in the statement of
Lemma 8 to “β-normal form”. If a λ-term M is β-normal but not η-
long relative to a negatively non-duplicated typing, there may be no almost
affine λ-term that β-reduces to M . For example, M = w(xy)(x(λz.yz))
has a negatively non-duplicated typing, but M does not β-expand to any
almost affine λ-term. Note that M is βη-equal to an almost affine λ-term
(λv.wvv)(x(λz.yz)).

5 Conclusion

We have proved that a λ-term that has a negatively non-duplicated typing is
always βη-equal to an almost affine λ-term. The main lemma for the theorem
gives a characterization of long normal forms of almost affine λ-terms as
those λ-terms in long normal form whose principal typing is negatively non-
duplicated.

Bourreau and Salvati (2011) characterized λ-terms that are in long nor-
mal form relative to a negatively non-duplicated typing in terms of the
notion of first-order copying λ-term. They used game semantics to obtain
this characterization (among other results), but the characterization can also
be obtained from the results in section 3 of this paper fairly easily. Bour-
reau and Salvati (2011) made no attempt to show that a first-order copying
λ-term always β-expands to an almost affine λ-term.
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